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Abstract—Online state of health (SOH) estimation is critical 

for the safety and performance of lithium-ion batteries, especially 

in dynamic environments like electric vehicles and grid energy 

storage systems, where accurate monitoring prevents failures and 

enhances reliability. Convolutional Neural Networks have shown 

great potentials in SOH estimation. To improve the estimation 

accuracy, traditional methods focus on increasing the depth and 

width of the network. The resulting network structure is often 

complex and difficult to deploy on resource limited mobile devices. 

Based on the structure reparameterization technique, this paper 

simplifies the network structure from the training stage to the 

inference stage. Tuning the hyperparameters of a complex 

network is not an easy task. In this paper, an advanced 

hyperparameter optimization engine is used to automatically 

search for the optimal hyperparameters of the network structure. 

Finally, in the inference stage, the FLOPs of the model after 

structure reparameterization are reduced by 16.799% as least. 

The SOH estimation results on two battery aging datasets 

demonstrate the superiority and robustness of the proposed model, 

with a maximum average performance improvement of 21.92%.  

Keywords—SOH estimation, Structural re-parameterization, 

Hyperparameter optimization, Lithium-ion batteries, Convolutional 

neural network. 

I. INTRODUCTION 

The increased adoption of lithium-ion batteries in electric 
vehicles (EVs) and renewable energy systems has amplified the 
need for accurate and efficient state of health (SOH) estimation 
to ensure performance and safety [1]. Accurate SOH monitoring 
not only supports optimal energy usage but also minimizes risks 
associated with battery degradation, such as capacity reduction 
and increased resistance, which can lead to overheating and 
safety hazards [2]. Consequently, SOH estimation has become 
essential in extending the lifespan and reliability of EV batteries 
and grid storage systems, highlighting the importance of 
developing robust and efficient SOH estimation methods for 
these applications. 

Traditionally, SOH estimation methods are divided into two 
primary categories: model-based and data-driven approaches [3]. 
Model-based methods involve constructing equivalent circuit 
models, electrochemical models, or empirical degradation 

models to simulate battery behavior and monitor health 
indicators such as capacity retention and resistance change. 
Although these models can be highly accurate, they often 
require extensive domain knowledge and specialized 
parameterization, limiting their versatility across different 
battery chemistries and operating conditions. On the other hand, 
data-driven methods leverage historical battery data, bypassing 
the complexities of electrochemical modeling by directly 
mapping observable indicators to SOH predictions. This 
approach, supported by machine learning and deep learning 
techniques, has shown promise in capturing complex battery 
aging behaviors in real time, offering improved generalizability 
and adaptability across battery types and use cases. 

Within data-driven SOH estimation, Convolutional Neural 
Networks (CNNs) have demonstrated significant potential, 
especially when combined with feature selection and model 
refinement techniques. Recent studies have proposed hybrid 
models, such as CNN-BiLSTM and transfer learning 
architectures [4], that integrate multiple data sources and 
leverage recurrent layers for temporal data processing, 
achieving state-of-the-art accuracy in SOH estimation with 
limited data. These models are particularly valuable for real-
world applications, where acquiring extensive labeled datasets 
for different battery types is challenging. Moreover, incremental 
capacity and partial incremental capacity analysis, as explored 
in recent studies, have further refined feature selection by 
focusing on specific charge and discharge segments, enhancing 
model interpretability and accuracy [5]. However, these 
advanced models are often complex and computationally 
expensive, posing challenges for deployment on resource-
limited devices commonly used in EVs and portable 
applications [6]. 

To address the challenges of model efficiency and 
computational complexity in SOH estimation, structural re-
parameterization techniques, exemplified by RepMLPNet [7], 
offer a promising solution. Structural re-parameterization 
optimizes network architectures by converting complex 
structures used in the training phase into streamlined versions 
for inference, thereby reducing the computational load without 
sacrificing accuracy [8]. By adapting RepMLPNet with an 
improved channel attention mechanism, this study leverages a 
more efficient architecture suitable for real-time applications in 
EVs and IoT-based energy systems, enabling high-performance 
SOH estimation that remains lightweight and deployable on 
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edge devices with limited resources. Furthermore, effective 
hyperparameter tuning is essential for maximizing model 
performance across diverse datasets and operating conditions. 
Utilizing the Optuna framework [9] within a carefully designed 
search space, this work automates the tuning process, achieving 
optimal parameter configurations that enhance both tuning 
efficiency and estimation accuracy. This approach enables the 
re-parameterized model to adapt robustly to different 
operational demands, further improving its generalizability and 
robustness. 

In this paper, a structurally re-parameterized CNN model, 
termed r-RepMLPNet, is proposed for efficient SOH estimation 
of Lithium-ion batteries (LIBs). The specific contributions are 
as follows: 

 The proposed r-RepMLPNet extends the original 
RepMLPNet model with an optimized channel attention 
mechanism, reinforcing feature extraction efficiency and 
simplifying the network structure, making it suitable for 
real-time SOH estimation tasks. 

 Given a targeted search space, the Optuna framework 
efficiently tunes r-RepMLPNet, identifying optimal 
hyperparameters that enhance model accuracy and tuning 
efficiency, and making SOH estimation performance 
consistent across varying operational scenarios. 

 By leveraging structural re-parameterization techniques 
during inference, r-RepMLPNet achieves significant 
FLOPs reduction without compromising accuracy, 
offering a high-performance, low-complexity model fit 
for deployment on resource-constrained devices. 

II. PRELIMINARY WORK 

A. SOH Definition 

SOH is used to describe the health state of a battery which is 
defined as follows [10]: 

𝑆𝑂𝐻𝑖 =
𝑄𝑖

𝑄0
, (1) 

where 𝑄𝑖 is the maximum accessible capacity at the 𝑖𝑡ℎ cycle, 
and 𝑄0 is the initial capacity of the battery.  

B. Structural Re-parameterization 

Structural re-parameterization is a technique used to enhance 
the efficiency of deep neural networks by converting multi-
branch structures into simpler, single-branch ones during 
inference. This process reduces computational overhead while 
retaining performance [11]. There are two representative cases 
of structural re-parameterization: first, fusing batch 
normalization (BN) parameters into conv (short for 
“convolutional”) layers; and second, merging bypass conv 
parameters into the main fully connected (FC) layers [7]. In this 

paper, a feature map is denoted as 𝑀 ∈ ℝ𝑛×𝑐×ℎ×𝑤, where 𝑛, 𝑐, 
ℎ, 𝑤 are the batch size, number of channels, height and width, 
respectively. Assuming that the size of the feature map remains 
unchanged after passing through the conv layer, this process can 
be expressed as: 

𝑀out = CONV(𝑀in, 𝐹, 𝑝), (2)

where 𝑀out ∈ ℝ𝑛×𝑜×ℎ×𝑤  is the output, 𝑜  is the number of 
output channels, 𝑝  is the number of pixels to pad, and 𝐹 ∈
ℝ𝑜×𝑐×𝑘×𝑘 is the kernel of conv.  

1) Fuse BN into conv 
For a trained BN layer, 𝜇, 𝜎, 𝛾, 𝛽 ∈ ℝ𝑜 are the accumulated 

mean, standard deviation, and learned scaling factor and bias, 
respectively. Then, to fuse the BN layer below a conv layer, the 
formula is given by 

𝛾𝑖

𝜎𝑖
(CONV(𝑀, 𝐹, 𝑝);,𝑖,:,; − 𝜇𝑖) + 𝛽𝑖

= CONV(𝑀, 𝐹′, 𝑝):𝑖,:,: + 𝑏𝑖
′, ∀1 ≤ 𝑖 ≤ 𝑜,

(3) 

where 𝐹′ and 𝑏′ are the new kernel and bias, constructed by 

𝐹𝑖,:,:,:
′ =

𝛾𝑖

𝜎𝑖
𝐹𝑖,:,:,: , 𝑏𝑖

′ = −
𝜇𝑖𝛾𝑖

𝜎𝑖
+ 𝛽𝑖 . (4) 

2) Merge conv into FC 
In this paper, a vector is denoted by as 𝑉 ∈ ℝ𝑛×𝑝, the data 

flow through an FC layer (without bias) is formulated as 

𝑉out = MMUL(𝑉in, 𝑊) = 𝑉in ⋅ 𝑊⊤, (5) 

where 𝑉out ∈ ℝ𝑛×𝑞  is the output, 𝑞  is the number of output 
neurons, and 𝑊 ∈ ℝ𝑞×𝑝 is the kernel of FC. When considering 
the input as a feature map, RS (short for “reshape”) is needed, 
i.e., the input is first flattened into 𝑛  vectors of length 𝑐ℎ𝑤 , 

which is 𝑉in = RS (𝑀in, (𝑛, 𝑐ℎ𝑤)) , multiplied by the kernel 

𝑊(𝑜ℎ𝑤, 𝑐ℎ𝑤), then the output 𝑉out(𝑛, 𝑜ℎ𝑤) is reshaped back 
into 𝑀out(𝑛, 𝑜, ℎ, 𝑤). The whole process can be simplified as 

𝑀out = MMUL(𝑀in, 𝑊). (6) 

In order to equivalently merge the conv layer into its parallel 
FC layer, it is necessary to construct such a 𝑊′ which satisfies 
the following equation 

MMUL(𝑀in, 𝑊′)

= MMUL(𝑀in, 𝑊) + CONV(𝑀in, 𝐹, 𝑝).
(7) 

Considering the additivity of MMUL , the core of merging a 
conv layer into the FC layer lies in constructing a 𝑊𝐹,𝑝, with 
the same shape of 𝑊 to ensure that 

MMUL(𝑀in, 𝑊(𝐹,𝑝)) = CONV(𝑀in, 𝐹, 𝑝). (8) 

Equation (8) can be written in another way, that is 

𝑉out = 𝑉in ⋅ 𝑊(𝐹,𝑝)⊤. (9) 

For a given 𝑀in, 𝐹, 𝑝, the corresponding 𝑊(𝐹,𝑝) exists as a 
conv layer can be seen as a parameter-shared FC layer, 
structured liked a Toeplitz matrix. If inserting an identity matrix 
𝐼(𝑐ℎ𝑤, 𝑐ℎ𝑤) into (9), and then with explicit RS, the following 
formula can be derived: 

𝑉out = 𝑉in ⋅ RS (𝐼 ⋅ 𝑊(𝐹,𝑝)⊤, (𝑐ℎ𝑤, 𝑜ℎ𝑤)) . (10) 

Note that 𝐼 ⋅ 𝑊(𝐹,𝑝)⊤ is exactly a convolution with 𝐹 on a 

feature map 𝑀I which is reshaped from 𝐼, i.e., 

𝐼 ⋅ 𝑊(𝐹,𝑝)⊤ = CONV(𝑀I, 𝐹, 𝑝)

= CONV(RS(𝐼, (𝑐ℎ𝑤, 𝑐, ℎ, 𝑤)), 𝐹, 𝑝).
(11) 
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Actually, the formula to obtain 𝑊′ given in [7], that is, 

𝑊′ = 𝑊(𝐹,𝑝) + 𝑊

= RS(CONV(𝑀I, 𝐹, 𝑝), (𝑐ℎ𝑤, 𝑜ℎ𝑤))
⊤

+ 𝑊.
(12) 

III. METHODOLOGY 

A. r-RepMLPNet: reinforced RepMLPNet 

 

Fig. 1. Multi-stage r-RepMLPNet. 

The architecture of the proposed r-RepMLPNet is shown in 
Fig. 1, which is largely consistent with the original RepMLPNet, 
but two changes are made to simplify the network structure and 
reduce the memory and computational overhead. First, the FFN-
style blocks in the r-RepMLP unit are omitted. Second, the 
global perceptron in the r-RepMLP block, which can also be 
regarded as an Squeeze-Excitation (SE) Attention [12] module, 
is replaced with an Effective Channel Attention (ECA) [13] 
module. The details are elaborated in the following subsections. 

1) ECA vs. SE Attention 

 

Fig. 2. The schemma of ECA and SE Attention. 

SE Attention emphasizes relevant features by explicitly 
recalibrating channel weights through a squeeze-and-excitation 
operation, as shown in Fig. 2.  

𝑀out = 𝑀in⨀𝜎 (𝑓{𝑊1,𝑊2} (𝑔(𝑀in))) , (13) 

where 𝑔(𝑀in) =
1

𝑤×ℎ
∑ 𝑀ij

in𝑤,ℎ
𝑖=1,𝑗=1   is channel wise global 

average pooling, 𝜎  is a Sigmoid function, 𝑊1 ∈ ℝ𝑟×𝑐  and 
𝑊2 ∈ ℝ𝑐×𝑟 are the kernel of two FC layers, respectively. Let 

𝑦 = 𝑔(𝑀𝑖𝑛), then 𝑓{𝑊1,𝑊2}(⋅) is formulated as  

𝑓{𝑊1,𝑊2}(𝑦) = 𝑊2ReLU(𝑊1𝑦), (14) 

where ReLU indicates the Rectified Linear Unit.  

ECA refines channel-wise dependencies by applying 
adaptive convolution, enhancing efficiency without 
dimensionality reduction. The mapping formula for 𝑘 is written 
in (15) 

𝑘 = 𝜓(𝑐) = |
log2 𝑐 + 𝑏

𝛾
|

𝑜𝑑𝑑

, (15) 

where |⋅|𝑜𝑑𝑑 is the nearest odd number, γ and b are set to 2 and 
1. Unlike SE, ECA omits dimensionality reduction, yielding a 
more lightweight and computationally efficient mechanism.  

2) r-RepMLP Block 
As illustrated in Fig. 3, the r-RepMLP block integrates a 

multi-branch design in the training phase, then with structural 
re-parameterization, these branches are turned into a simpler, 
single-branch architecture for inference.  

In its training-time configuration, the r-RepMLP Block is 
designed model the information on different levels by 
combining three key components: Global Perceptron, Channel 
Perceptron and Local Perceptron. During the inference phase, 
the parameters from the trained local perceptron are integrated 
into the channel perceptron through three main steps, this 
process can also be described as locality injection. First, the 
“conv-BN” structure in the local perceptron is transformed into 
a single “conv” structure, utilizing the method of “merge BN 
into conv”, as detailed in Section II. Second, three conv branches 
are combined into a single convolution layer by padding all 
kernels to the size of the largest kernel. Lastly, the “merge conv 
into FC” process mentioned in Section II is executed, which 
completes the locality injection, effectively streamlining the 
model for enhanced inference efficiency. 

B. Hyperparameter Optimization 

Optuna is an open-source hyperparameter optimization 
engine that has been successfully used to tune the 
hyperparameters of machine learning models. Among various 
samplers provided in Optuna, the Bayesian independent 
sampling algorithm, i.e., Tree-structured Parzen Estimator is 
used for hyperparameter searching. In Bayesian optimization, 
contrary to the grid or random search, the results of past 
evaluations are employed for building a probabilistic model that 
maps hyperparameters to the probability of a score in the 
objective function. In this way, the optimization process is more 
efficient as the next set of hyperparameters are selected in an 
informed manner. By setting an estimation metric on the 
validation set as the objective function, the tuning process is 
aiming to find the optimal combination of hyperparameters that 
minimizes this metric. 
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C. Implementation of r-RepMLPNet for SOH Estimation 

 

Fig. 4. The process of data augmentation. 

The implementation of r-RepMLPNet for SOH estimation 
begins by acquiring battery aging data from two public datasets. 
Initially, the dataset is split into training and test sets. Given the 
limited sample size, data augmentation is applied to the training 
set as outlined in Fig. 4. The augmented training set is then 
further divided into a new training and validation set. Mean-
variance normalization is performed on all sets for consistency. 
Next, time-series data are transformed into image formats for 
network training, using L1 loss as the loss function. Optuna is 
employed to optimize the network’s hyperparameters. The best-
performing model is selected based on validation results, after 
which locality injection is applied to yield a structurally re-
parameterized network optimized for efficient model inference. 

IV. EXPERIMENTAL VALIDATION 

A. Data Description 

The NASA battery degradation dataset, from the NASA 
Ames Prognostics Center of Excellence, includes aging data for 
lithium cobalt oxide batteries with a rated capacity of 2 Ah [14]. 
This study used four LIBs (B5, B6, B7, and B18), charged and 
discharged at room temperature (24 °C). Charging followed a 
constant-current-constant-voltage (CC-CV) mode with a 1.5 A 
current until 4.2 V, then constant voltage until the current 
dropped below 20 mA. Discharging was at a constant current of 
2 A until the voltage dropped to 2.7 V, 2.5 V, 2.2 V, and 2.5 V 
for B5, B6, B7, and B18, respectively. The experiment ended 
when the battery capacity decreased by 30% (from 2 Ah to 1.4 
Ah), marking end of life. 

Eight Kokam lithium-ion pouch cells (Cell1–Cell8), each 
with a 740 mAh capacity, were tested at 40 °C for the Oxford 
battery degradation dataset [15]. These cells have cathodes of 
lithium cobalt oxide and lithium nickel cobalt oxide, and anodes 
of graphite. They were charged using a CC-CV profile and 
discharged following a drive cycle from the urban Artemis 
profile. Characterization measurements were taken every 100 
cycles to assess the SOH. All cells were charged at 1 C (0.74 A) 
until reaching 4.2 V, and discharged at 1 C until 2.7 V. 

B. Evaluation Metrics 

To evaluate the performance of the proposed model, mean 
absolute error (MAE), root mean squared error (RMSE), mean 
absolute percentage error (MAPE), and coefficient of 
determination (R2) are employed to measure the discrepancy 

 

Fig. 3. The detailed structure of r-RepMLP Block. 𝑠 is the number of share-sets [7]. 
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between the estimated SOH �̂�𝑖  and the target SOH 𝑦𝑖 . The 
formulas are given by: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

× 100%, (16) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

× 100%, (17) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖|

𝑁

𝑖=1

× 100%, (18) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 −
1
𝑁

∑ 𝑦𝑖
𝑁
𝑖=1 )

2
𝑁
𝑖=1

, (19) 

where 𝑁 is the number of test samples. 

C. Experimental Setting 

Model parameters significantly influence the performance of 
data-driven methods. TABLE I. shows the hyperparameter 
configuration. Except the proposed r-RepMLPNet, a variant of 
ResNet [16] is used as a baseline model in this study. All deep 
learning models are uniformly configured with 100 training 
epochs and an early stopping patience of 20 epochs. The 
learning rate varies between 1e-4 and 0.01, and batch size is set 
to 512. AdamW is used as the optimizer, with a weight decay of 
1e-4 and momentum parameters 𝛽 = (0.5,0.999). 

TABLE I. HYPERPARAMETER SETTING 

Source Parameter Search space 

Model parameters:  
r-RepMLPNet 

Number of stages  {1, 2} 

Number of r-RepMLP blocks {1, 2} 

Number of share-sets {1, 2, 4, 6, 8} 

Model parameters: ResNet Number of residual blocks {1, 2, 3, 4} 

Training parameter Learning rate {range (1e-4, 0.01)} 

All cycles in both datasets were resampled to 196 points, 
expanding the training set to 20 times its size through data 
augmentation. For the Oxford dataset, Cell6 and Cell8 were 
target batteries; their full cycle data formed the test set, while 
data from other batteries were split 8:2 for training and 
validation. For the NASA dataset, B5 was the target battery, 
with the last 30% of its cycle data for testing, the prior 70% for 
validation, and data from all other batteries for training. 

D. Experimental Results 

Apart from evaluating the discrepancy between the proposed 
model's estimation and the true labels, a comparison is 
conducted with three other models: ResNet and two variations 
based on RepMLPNet. The primary difference is in the global 
perceptron; one model employs SE Attention as in the original 
RepMLPNet (“original”), while the other excludes the global 
perceptron entirely (“pruned”). The SOH estimation results for 
B5, Cell6, and Cell8 are illustrated in Fig. 5, Fig. 6, and Fig. 7.  

TABLE II. presents the estimation accuracy metrics for four 
models across three LIBs. The r-RepMLPNet consistently 
outperforms the other three models, achieving higher estimation 
accuracy on each battery dataset. The average performance 
improvements of the proposed model on four error metrics are 
shown in TABLE III. It shows that the maximum and minimum 
improvements are 21.920% and 16.750%, respectively. This 
demonstrates the model’s superior capability in accurately 
capturing the SOH, highlighting its effectiveness and robustness 
compared to ResNet and the other RepMLPNet-based variants. 

 

Fig. 5. Estimated SOH curves and the absolute errors obtained with various 

models for B5. 

 

Fig. 6. Estimated SOH curves and the absolute errors obtained with various 

models for Cell6. 

TABLE II. SOH ESTIMATION RESULTS OF THE PROPOSED MODEL ON TWO DATASETS 

Model NASA  Oxford 

 B5  Cell6  Cell8 

 MAE RMSE MAPE R2  MAE RMSE MAPE R2  MAE RMSE MAPE R2 

ResNet 0.501 0.726 0.683 0.8815  0.399 0.492 0.460 0.9923  0.532 0.626 0.618 0.9915 

p-RepMLPNet 0.543 0.685 0.736 0.8945  0.359 0.484 0.415 0.9925  0.468 0.773 0.561 0.9870 

RepMLPNet 0.464 0.688 0.640 0.8938  0.349 0.576 0.408 0.9894  0.432 0.478 0.504 0.9950 

r-RepMLPNet 0.452 0.591 0.615 0.9216  0.283 0.460 0.328 0.9933  0.249 0.313 0.297 0.9979 
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Fig. 7. Estimated SOH curves and the absolute errors obtained with various 

models for Cell8. 

TABLE III. AVERAGE PERFORMANCE IMPROVEMENTS OF r-REPMLPNET 

Model Improvement of r-RepMLPNet (%) 

 MAE RMSE MAPE R2 Average 

ResNet 30.683 25.033 30.198 1.765 21.920 

p-RepMLPNet 28.241 26.063 28.154 1.405 20.966 

RepMLPNet  21.286 22.919 21.529 1.265 16.750 

TABLE IV. summarizes the FLOPs for three RepMLPNet-
based variants before and after locality injection, as well as the 
reduction rates achieved through structural re-parameterization. 
The results demonstrate a significant reduction in computational 
load, with all models showing a decrease of over 16% in FLOPs 
following locality injection. 

TABLE IV. CHANGES IN FLOPS BEFORE AND AFTER LOCALITY INJECTION 

WITH B5 AS AN EXAMPLE 

Model   

FLOPs(B) 

p-RepMLPNet RepMLPNet r-RepMLPNet 

Without locality injection 10.500 14.281 14.245 

With locality injection 8.580 11.882 11.846 

Reduction ratio 18.279% 16.799% 16.841% 

 

V. CONCLUSION 

This study introduces the r-RepMLPNet, an advanced model 
for online SOH estimation of lithium-ion batteries, particularly 
designed for dynamic environments such as EVs and grid energy 
storage systems. By incorporating an optimized channel 
attention mechanism, the model enhances feature extraction 
efficiency while streamlining the network architecture for real-
time applications. The use of the Optuna framework for 
hyperparameter optimization allows for effective exploration of 
the parameter space, resulting in improved model accuracy and 
consistency across various operational scenarios. Furthermore, 
structural re-parameterization techniques employed during the 
inference stage significantly reduce computational complexity 
without sacrificing accuracy. The proposed model demonstrates 
enhanced performance and robustness in SOH estimation tasks, 
providing a promising solution for high-performance, low-
complexity applications on resource-constrained devices. 
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