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Abstract—This paper introduces an approach to enhance
wind speed prediction by integrating Physics-Informed Vectors
with neural network architectures, specifically Long Short-Term
Memory and Temporal Convolution Networks. It also proposes a
hybrid decaying loss function aimed at improving the efficiency
of model training and its predictive performance. The method-
ology utilizes physical knowledge and atmospheric data from
various global locations to develop predictive models. Evalua-
tions conducted using datasets from Canada, Chile, Kazakhstan,
and Mongolia illustrate the advantages of including Physics-
Informed Vectors. The incorporation of these vectors leads to
improvements in Mean Squared Error, Mean Absolute Error,
and R2 Score across different volumes of data. The analysis
reveals improvements of up to 8.43% in Mean Absolute Error,
16.39% in Mean Squared Error, and 0.82% in R2 Score for
models based on Long Short-Term Memory. For models based on
Temporal Convolution Networks, improvements of up to 17.27%
in Mean Absolute Error, 29.24% in Mean Squared Error, and
1.55% in R2 Score were observed. The introduction of a custom
loss function, which merges mean squared error with Physics-
Informed Vector estimates, aids in hastening the convergence
of models by modulating the influence of these vectors during
the training phase. The study underscores the effectiveness of
incorporating physics-informed techniques into machine learning
for predicting renewable energy sources, thereby opening paths
for further research and application in this domain.

Index Terms—Physics-Informed Vectors, Wind Speed Predic-
tion, Neural Network Architectures, LSTM, TCN, Renewable
Energy Forecasting

I. INTRODUCTION

Wind energy is a key agent in renewable energy sources but
its unpredictable, impulsive, and uncertain nature poses the
major challenge to use it as a sustainable and reliable source
of power.Accurate wind speed forecasting is essential for
stable power generation, weather prediction, and integrating
wind energy into the grid, enhancing energy security and
reducing reliance on non-renewable sources. It also improves
operational and financial planning in the energy sector, low-
ering costs. Despite the limitations of physical models and
the need for condition-specific customization in probabilistic
and machine learning algorithms, Physics-Informed Machine
Learning and Neural Networks (PIML/PINN) present effective
solutions for addressing complex constraints in this research
area.

A recent study explores wind forecasting through supervised
learning, which faces challenges at ground level. By analyzing
wind data via anemometers located in Italy, the research
found that optimal algorithms differ by location due to factors
like variable types and model linearity, enhancing the under-
standing of atmospheric physics for tailored algorithm design
[1]. Another innovative method, the graph-based PIGNN-
CFD, utilizes CFD simulations to predict urban wind fields
rapidly. This approach overcomes the traditional CFD models’
limitations of time-intensive computations and non-scalability,
allowing predictions across large urban areas [2]. In contrast,
traditional forecasts often use Numerical Weather Prediction
(NWP) models [3], [4], which can be error-prone due to
numerical simplifications. Machine Learning (ML) techniques,
particularly those integrating physics, significantly improve
wind energy forecasting accuracy [5]. Similarly, Physics-
Informed Neural Networks (PINNs) offer a quicker alternative
for modeling wind fields in wind farms by reconstructing
inflow velocity, validated against sparse simulated data [6].
Additionally, using Physics-Informed Artificial Intelligence
(PIAI) surrogates enhances power forecasting by augment-
ing incomplete data, increasing accuracy and reliability with
GANs and other models [7]. A comprehensive review also
outlines how Physics-Informed Machine Learning (PIML)
could supplement or replace expensive simulations in turbulent
flows, particularly through neural networks for complex high
Reynolds number flows in fluid mechanics [8].

Forecasting models are categorized into statistical [9] and
artificial intelligence [10], [11] types, with a focus on Ar-
tificial Neural Networks (ANNs) for effective wind speed
predictions [12]. Short-term forecasting for smart grids is
reviewed, classifying 41 learning-based models into classical,
advanced, and probabilistic categories [13]. A novel fore-
casting framework integrates singular spectrum analysis and
VMD with multi-objective optimization for precise predictions
[14]. An innovative hybrid deep learning architecture employs
an enhanced transformer network for seasonal and stochastic
wind variability [15]. Mixed-frequency data is used in a
combined model featuring novel evaluation and non-linear
combination forecasting modules [16]. A comparative study
favors the CNN model for its accuracy and stability over
techniques like ARIMA, GM, and LSTM [17]. To address
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variable consideration and model optimization, a multivari-
ate system utilizes advanced selection methods and multi-
objective optimization [18]. A multi-step approach integrates
outlier detection, adaptive data decomposition, and multi-
model fusion to enhance forecasting accuracy [19]. Finally,
a weighted ensemble model is optimized using an adaptive
dynamic grey wolf-dipper throated optimization algorithm for
improved accuracy [19]. This work examines the Thermal
Wind Equation 1 and the Equation of Motion 2, essential
for understanding wind dynamics driven by temperature and
pressure gradients.

V⃗T =
−R

f ·∆p
(∇T ×∆T ) (1)

In this equation, V⃗T denotes the thermal wind vector, influ-
enced by the specific gas constant R, the Coriolis parameter
f , pressure difference ∆p, and the horizontal temperature
gradient ∇T .

fk⃗ × V⃗ = −1

ρ
∇P (2)

The Equation of Motion relates the Coriolis effect, air
density ρ, and pressure gradients ∇P to wind velocity V⃗ .
Moreover, humidity modifies these dynamics by affecting
air density and temperature. These equations support theo-
retical wind speed calculations, but real-world applications
face challenges from atmospheric non-linearities, humidity
changes, and geographical factors. This study introduces two
new approaches to improve the accuracy and efficiency of
wind speed models.

First, a physics-informed model uses atmospheric data from
a 100 km radius in all four cardinal directions, using the strong
effect of surrounding conditions on local wind speeds. This
method uses external atmospheric variables, including temper-
ature, pressure gradients, humidity, wind speed, and direction,
as extra predictive features, improving model accuracy through
a detailed spatial analysis.

Second, we develop a custom hybrid loss function that
combines future wind speed estimates with mean squared error
(MSE), characterized by a decaying property to accelerate
the training convergence. This approach not only reduces
prediction error more quickly but also integrates atmospheric
dynamics into the model training more effectively, leading
to improved performance and efficiency in predicting wind
speeds. These contributions results in significant progress in
atmospheric modeling, offering a more accurate and efficient
framework for wind speed prediction

II. PROPOSED METHODOLOGY

The proposed methodology comprises two main steps: first,
computing the Physics-Informed Vector (PIV), followed by its
application in predicting wind speed. Figure 1 illustrates the
overall block diagram of the scheme. The initial phase involves
collecting and concatenating data from temperature, humidity,
wind speed, air pressure, and wind direction, sourced from

the four cardinal directions to form vector X . This physics-
informed vector X , once established, utilizes incoming feature
vectors at time t to generate wind speed estimates for t + 1.
These estimates are then integrated as additional features
alongside the original temperature, humidity, wind speed, air
pressure, and wind direction of the origin location. Conse-
quently, the enhanced feature set, enriched by the physics
informed estimate, serves as input for the model to refine
predictions. Detailed descriptions of each step are provided
in the following subsections.

Fig. 1. Block diagram of Proposed Scheme.

A. Calculation of Physics-Informed Vector (PIV)
The calculation of the Physics-Informed Vector (PIV) begins

by assembling feature vectors from the four cardinal directions
(North, South, East, West) into matrix A. Each row in matrix
A represents the combined atmospheric data at a specific time
step leading up to the current time t, structured as in equation
3.

A =

⎛

⎜⎝
f0◦

t−k f90◦

t−k f180◦

t−k f270◦

t−k
...

...
...

...
f0◦
t f90◦

t f180◦
t f270◦

t

⎞

⎟⎠ (3)

where k represents the total number of historical observa-
tions, and each feature vector fθ

t (θ being 0, 90, 180, or 270
degrees) contains the parameters Temperature (T), Humidity
(H), Wind Direction (D), Wind Speed (S), and Air Pressure
(P) from one of the cardinal directions. The target vector b
corresponds to the future wind speed at the central location.

The PIV, X , is obtained through solving the least mean
square problem represented by the equation AX = b. Given
the nature of A as a tall matrix, where the number of rows
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(observations) exceeds the number of columns (features), the
direct inverse of A is not computable. Instead, the solution
involves the use of the pseudo-inverse (A+) of A, provides a
means to find the ’best possible’ solution to a system of linear
equations that does not have a unique solution or might be
over determined.

Mathematically, the pseudo-inverse is utilized as given in
equation 4 to solve for X .

X = A+b (4)

where A+ is the pseudo-inverse of A. The computation of
A+ is typically achieved through the Singular Value Decom-
position (SVD) of A, given by equation 5.

A = UΣV T (5)

Here, U and V are orthogonal matrices, and Σ is a diagonal
matrix containing the singular values of A. The pseudo-inverse
A+ is then calculated as in equation 6.

A+ = V Σ+UT (6)

where Σ+ is obtained by taking the reciprocal of the non-
zero singular values in Σ and then transposing the matrix. In
practical terms, this process minimizes the squared differences
between the observed future wind speeds (b) and the wind
speeds predicted by the model (AX), thereby finding the least
mean square solution.

By employing the pseudo-inverse, we effectively find the
best-fit line that maps the atmospheric features from the four
cardinal directions to the future wind speed of the central
location. This best-fit line, or model, represented by X , serves
as the Physics-Informed Vector (PIV), which encapsulates the
relationship between the side features and the future wind
speed, denoted as Ŝt+1.

The application of the pseudo-inverse in solving the least
mean square problem allows for the incorporation of complex
atmospheric data into a coherent model for wind speed pre-
diction, reflecting a sophisticated approach to understanding
and forecasting atmospheric dynamics.

B. Incorporating PIV in Wind Speed Prediction
Once X is calculated, it is used to estimate future wind

speed (Ŝ) at any given time t. This estimation involves
multiplying X by the directional feature vector at time t—f0◦

t ,
f90◦
t , f180◦

t , and f270◦
t —to estimate the wind speed at t+ 1

Ŝt+1 = (f0◦

t · f90◦

t · f180◦

t · f270◦

t ) ·X (7)

This estimate, along with the atmospheric parameters at time
t [T,H,D, S, P ], is used as input features for predicting wind
speed at t + 1. The custom loss function for this model is
defined as in equation 8.

L =
1

N

N∑

i=1

(St+1,i− ˆ̂St+1,i)
2+λ0e

−pt 1

N

N∑

i=1

( ˆ̂St+1,i−Ŝt+1,i)
2

(8)

Here, ˆ̂St+1,i is the model’s predicted wind speed, Ŝt+1,i is
the estimated wind speed from step 1, N is the number of
observations, and λ0e−pt controls the contribution of the dif-
ference between the model’s predictions and the PIV estimates,
allowing the model to initially align closely with the PIV
estimates. As training progresses and the model parameters
are tuned, the loss function’s design reduces the search space,
enabling finer adjustments towards the actual wind speed.

C. Optimizing Model Convergence with Hybrid Decaying
Loss Function

The strategic modulation by of the PIV-based term in the
loss function using equation 8 addresses the core challenge of
integrating domain-specific knowledge with predictive model-
ing. It uses the initial guidance provided by PIV for rapid
early adjustments and allows the model to later focus on
the empirical data, enhancing both the speed and quality of
convergence. This approach balances physical insights with
data-driven learning, leading to a predictive model that adjust
quickly and performs accurately in wind speed forecasting
tasks. These improvements show the usefulness of the hybrid
decaying loss function in making the training process more
efficient and the predictions more accurate, especially for tasks
like wind speed forecasting.

III. RESULTS AND COMPARISON

In this section, we present a detailed analysis of the per-
formance of Long Short-Term Memory (LSTM) and Tem-
poral Convolutional Network (TCN) models for wind speed
prediction. In this study the main objective was to evaluate
the impact of integrating Physics-Informed Vectors (PIV) into
these models and to examine their efficacy across datasets of
varying sizes derived from four different countries that are
Canada, Chile, Mongolia, and Kazakhstan. These countries
were chosen because they have higher potential for wind
energy and their solar energy potential was relatively low,
making such areas ideal for deploying wind mills. We pri-
mary purposed was to explore the effect of incorporation of
PIV influences on model’s accuracy, convergence speed, and
overall prediction performance.

Hence, we conducted experiments using complete datasets
and reduced subsets, representing 75%, 50%, and 20% of
the original data. The models’ performances were evaluated
based on three key metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and R2 Score, both during training and
testing phases. This allowed us to not only compare LSTM
and TCN models in terms of their predictive accuracy and
efficiency but also to understand the benefits and potential
limitations of applying PIV in the realm of wind speed
forecasting.

A. Overview of Experimental Setup

Data was collected from each location in the mentioned
countries, extending 100 km in all cardinal directions, with
the following details and subset sizes:
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• Canada: Latitude 53.01, longitude -57.02; hourly data
from 1998 to 2022, totaling 219,180 hours. Subsets are
219,180 hours (100%), 164,385 hours (75%), 109,590
hours (50%), and 43,836 hours (20%).

• Chile: Latitude -53, longitude -70.91; hourly data from
2019 to 2022, totaling 35,070 hours. Subsets are 35,070
hours (100%), 26,302.5 hours (75%), 17,535 hours
(50%), and 7,014 hours (20%).

• Kazakhstan: Latitude 51.25, longitude 73.42; hourly
data from 2017 to 2019, totaling 26,298 hours. Subsets
are 26,298 hours (100%), 19,723.5 hours (75%), 13,149
hours (50%), and 5,259.6 hours (20%).

• Mongolia: Latitude 47.93, longitude 106.9; hourly data
from 2011 to 2015, totaling 43,830 hours. Subsets are
43,830 hours (100%), 32,872.5 hours (75%), 21,915
hours (50%), and 8,766 hours (20%).

These subsets are used to conduct a comprehensive analysis
of the model’s performance across different data volumes, pro-
viding insights that the PIV performs well even with a limited
amount of data. This is particularly important in cases where
memory-constrained devices, such as Jetson Nano devices, are
used for training models repeatedly. In such conditions, we
can calculate a PIV-informed vector using historical data from
a certain location, and then, by keeping a limited amount of
current data on the device, we can train and perform inference
in real-time scenarios.

Models Tested: The study utilized two advanced time
series prediction models, Long Short-Term Memory (LSTM)
and Temporal Convolutional Network (TCN), both with and
without Physics-Informed Vector (PIV) integration.

LSTM: Featuring 512 units per layer, the LSTM model pro-
cesses sequences through memory cells (Ct) and three gates:
input (it), forget (ft), and output (ot). These components help
maintain long-term dependencies within data. Mathematically,
LSTM can be given as in equation 9.

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf ),

ot = σ(Wxoxt +Whoht−1 + bo),

Ct = ft · Ct−1 + it · tanh(Wxcxt +Whcht−1 + bc),

ht = ot · tanh(Ct).

(9)

TCN: The TCN model includes 512 convolutional filters,
a kernel size of 3, and dilation rates of [1, 2, 4, 8, 16] with
’causal’ padding. This setup enables the TCN to handle long
data sequences by expanding its receptive field exponentially.
Mathamatically, TCN convolution operation can be given as
in equation 10.

yt = ReLU(W ∗ xt + b), (10)

where W denotes the convolutional filters, and b is the bias.
The dilation ensures the model’s output at any time t depends
only on past inputs, preserving temporal causality.

Evaluation Metrics: The model’s performance was as-
sessed using:

MSE =
1

n

n∑

i=1

(Si − ˆ̂Si)
2 (11)

where Si are actual wind speeds, ˆ̂Si are predictions, and n
is the number of observations. MSE measures the average
squared prediction errors.

MAE =
1

n

n∑

i=1

|Si − ˆ̂Si| (12)

MAE quantifies the average absolute errors.

R2 = 1−
∑n

i=1(Si − ˆ̂Si)2∑n
i=1(Si − S̄)2

(13)

where S̄ is the mean of actual speeds. R2 indicates the
proportion of wind speed variance predictable by the model’s
variables: temperature, humidity, wind speed, wind direction,
and air pressure.

These metrics evaluate the model’s accuracy (MSE and
MAE) and explanatory power (R2 Score).

Hardware Used: The experiments were conducted on an
Ubuntu system equipped with a 3080ti GPU for model training
and testing.

Improvement % =

(
Metricwith PIV − Metricwithout PIV

|Metricwithout PIV|

)
×100

(14)
Note that for MSE and MAE, a positive improvement %

indicates a decrease in error, while for the R2 Score, a positive
improvement % indicates an increase, reflecting better model
fit.

TABLE I: Results of PIV Informed Model

Dataset Subset MSE (m/s2) MAE (m/s) R2 Score

LSTM TCN LSTM TCN LSTM TCN

Canada All 0.00160 0.00164 0.020 0.021 0.92 0.91
75% 0.0016 0.00173 0.020 0.022 0.92 0.91
50% 0.00164 0.00175 0.020 0.022 0.91 0.91
20% 0.00173 0.00200 0.021 0.025 0.91 0.89

Chile All 0.05584 0.07828 0.166 0.207 0.99 0.99
75% 0.05699 0.07605 0.169 0.202 0.99 0.99
50% 0.05738 0.08747 0.169 0.216 0.99 0.99
20% 0.07304 0.14442 0.197 0.284 0.99 0.98

Kazakhstan All 0.04916 0.05899 0.160 0.179 0.99 0.99
75% 0.05078 0.06268 0.163 0.183 0.99 0.98
50% 0.04751 0.08083 0.156 0.208 0.99 0.98
20% 0.08792 0.14893 0.218 0.288 0.98 0.96

Mongolia All 0.06321 0.06234 0.174 0.173 0.98 0.98
75% 0.06571 0.06761 0.178 0.180 0.98 0.98
50% 0.06693 0.07361 0.178 0.189 0.98 0.98
20% 0.07024 0.12498 0.183 0.258 0.98 0.96
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B. Results

The impact of dataset size on model performance, specif-
ically using Physics-Informed Vectors (PIV), is detailed in
Table I. Models used 12-hour data spans to forecast subsequent
time steps, evaluated by Mean Squared Error (MSE), Mean
Absolute Error (MAE), and R2 Score across datasets from
Canada, Chile, Kazakhstan, and Mongolia, segmented into
subsets (All, 75%, 50%, 20%). Results indicate a consistent
trend where reduced dataset size leads to increased MSE
and MAE, and decreased R2 Score across both LSTM and
TCN models, underscoring the challenge of diminished data
availability on model accuracy.

For example, in the Canada dataset, LSTM’s MSE escalated
from 0.00160 (using all data) to 0.00173 (20% data), with a
corresponding R2 Score drop from 0.913 to 0.894 in the TCN
model. These trends highlight diminished predictive accuracy
with lesser data. The lowest errors were noted in the Canadian
dataset with the most samples, suggesting a direct correlation
between data volume and prediction accuracy. Conversely,
despite having fewer samples, the Chile dataset achieved the
highest R2 Score, indicating that while larger datasets gen-
erally improve accuracy and reduce prediction errors, the R2
Score also reflects other factors such as dataset characteristics
or the inherent predictability of the wind patterns, affecting
the model’s explanatory power.

C. Models Comparison With and Without PIV

To evaluate the enhancements provided by Physics-
Informed Vectors (PIV) on LSTM and TCN models, improve-
ments were measured using MSE, MAE, and R2 Score. The
percentage improvement for all metrics is calculated using
equation 14.

Fig. 2. MAE Improvement Across Datasets and Models

Fig. 3. R2 Improvement Across Datasets and Models

Fig. 4. MSE Improvement Across Datasets and Models

Figure 2 displays enhancements in mean absolute error
(MAE) across datasets from Canada, Chile, Kazakhstan, and
Mongolia, with the Physics-Informed Vector (PIV) derived
from the full dataset in each case. Color coding in the graphs
indicates the dataset proportion used for training: red for
100%, yellow for 75%, green for 50%, and blue for 20%.
Notably, the PIV-enhanced LSTM model shows improved
MAE across all datasets except Canada, with increases from
1.49% to 8.43%. The TCN model sees MAE improvements
in Chile, Kazakhstan, and Mongolia, with a performance dip
in Canada for the 20% and 50% data subsets.

Figure 4 illustrates mean squared error (MSE) improve-
ments using similar color codes. The LSTM model records
MSE enhancements in all datasets, with the smallest gain of
3.56% in Kazakhstan (75% data) and the highest of 16.39%
in Chile (20% data). The TCN model also shows MSE
improvements, ranging from 1.25% (20% of Mongolia) to
29.24% (75% of Chile), except in some Canada subsets.

Figure 3 demonstrates R2 score improvements, using the
same color scheme. The LSTM model sees R2 enhancements
across all datasets, with minimal and maximal increases of
0.05% (75% of Kazakhstan) and 0.82% (50% of Canada),
respectively. Similarly, the TCN model improves R2 scores
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except in the smallest Canada subset, with performance gains
from 0.04% (20% of Mongolia) to 1.55% (20% of Kaza-
khstan).

D. Hybrid Decaying Custom Loss Function and Model Con-
vergence

This section details the custom loss function described in
Equation 8, which combines mean squared error (MSE) with a
Physics-Informed Vector (PIV)-influenced term. The function
includes a decaying term λ0e−pt, with λ0 set at 0.5 and p
calculated as approximately 0.541, ensuring the PIV influence
diminishes after 20 iterations. This decay promotes initial use
of PIV insights and focuses on minimizing direct prediction
errors over time, enhancing model convergence. Figure 5
demonstrates faster convergence with the PIV-informed LSTM
model (blue line) compared to the non-PIV model (orange
line).

Fig. 5. Convergence Analysis of PIV Informed Model Vs. Non-Informed
Models

The hybrid decaying mechanism of the custom loss function
leverages physical insights initially, then transitions to pure
error minimization, accelerating convergence and ensuring ro-
bust predictions. This approach illustrates the effectiveness of
integrating domain-specific knowledge into machine learning
for complex forecasting tasks like wind speed prediction,
highlighting significant convergence improvements in PIV-
informed models.

IV. CONCLUSION

This work introduces an approach for improving wind speed
prediction by integrating Physics-Informed Vectors (PIV) and
a hybrid decaying loss function. The proposed method was
tested using datasets from various locations with high wind
power potential. It demonstrates the advantages of incorporat-
ing physical knowledge into machine learning models for man-
aging wind power systems. The custom loss function, which
adjusts the influence of PIV over time, effectively accelerates

model training convergence. Although this study used data
from the four cardinal directions, future research could explore
the effects of including intermediate directions and varying
data collection distances to optimize the methodology further.

REFERENCES

[1] D. Lagomarsino-Oneto, G. Meanti, N. Pagliana, A. Verri, A. Mazzino,
L. Rosasco, and A. Seminara, “Physics informed machine learning for
wind speed prediction,” Energy, vol. 268, p. 126628, 2023.

[2] X. Shao, Z. Liu, S. Zhang, Z. Zhao, and C. Hu, “Pignn-cfd: A physics-
informed graph neural network for rapid predicting urban wind field
defined on unstructured mesh,” Building and Environment, vol. 232, p.
110056, 2023.

[3] T. Howard and P. Clark, “Correction and downscaling of nwp wind
speed forecasts,” Meteorological Applications: A journal of forecasting,
practical applications, training techniques and modelling, vol. 14, no. 2,
pp. 105–116, Jun 2007.

[4] L. Dong et al., “Studies on wind farms ultra-short term nwp wind
speed correction methods,” in 2013 25th Chinese Control and Decision
Conference (CCDC). IEEE, 2013.

[5] N. M. R. Monteiro, “Improving wind energy forecasting with innovative
physics-informed machine learning approaches.”

[6] P. Cobelli, K. Shukla, S. Nesmachnow, and M. Draper, “Physics in-
formed neural networks for wind field modeling in wind farms,” in
Journal of Physics: Conference Series, vol. 2505, no. 1. IOP Publishing,
2023, p. 012051.

[7] Z. Wu, B. Sun, Q. Feng, Z. Wang, and J. Pan, “Physics-informed ai
surrogates for day-ahead wind power probabilistic forecasting with in-
complete data for smart grid in smart cities.” CMES-Computer Modeling
in Engineering & Sciences, vol. 137, no. 1, 2023.

[8] P. Sharma, W. T. Chung, B. Akoush, and M. Ihme, “A review of physics-
informed machine learning in fluid mechanics,” Energies, vol. 16, no. 5,
p. 2343, 2023.
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