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In this paper, a method for solving grid mismatch or off-grid target is presented for direction of arrival (DOA) estimation problem
using compressive sensing (CS) technique. Location of the sources are at few angles as compare to the entire angle domain, i.e.,
spatially sparse sources, and their location can be estimated using CS methods with ability of achieving super resolution and
estimation with a smaller number of samples. Due to grid mismatch in CS techniques, the source energy is distributed among
the adjacent grids. Therefore, a fitness function is introduced which is based on the difference of the source energy among the
adjacent grids. This function provides the best discretization value for the grid through iterative grid refinement. The
effectiveness of the proposed scheme is verified through extensive simulations for different number of sources.

1. Introduction

The direction of arrival (DOA) has been under investigation
for a long time [1–3], and with the advancement in wireless
communications, it has applications in a variety of fields like
radar, acoustic signal processing, medical imaging, and seis-
mology. The goal of DOA is to estimate the location of the
closely spaced sources in the presence of a noise. It is com-
mon to use antenna arrays with different structure [4, 5],
and there are many algorithms for estimation of the DOA
[6, 7]. The performance of these algorithms depends upon
the number of the samples and signal-to-noise ratio (SNR).
These algorithms can be divided in to three main categories
[8], conventional beamforming, subspace techniques, and
maximum likelihood technique. The most notable algo-
rithms used for DOA are multiple signal classification
(MUSIC) algorithm, estimation of signal parameter via a

rotational variant technique (ESPIRIT), and CAPON. These
algorithms require the sampling to be on the Nyquist rate,
i.e., sampling frequency should be at least twice the highest
frequency present in the signal.

Compressive sensing (CS) has gained a lot of attention
over the years because of its ability to exploit the concept of
sparsity [9, 10]. The CS has applications in the fields like
radars [11], image reconstruction and restoration [12, 13],
blind source separation [14, 15], beamforming, and source
localization [16–18]. A signal can be reconstructed only from
a small number of linear measurements if it is sparse in cer-
tain domain. It means that the information rate of the signal
is much smaller than the suggested signal bandwidth. As
most of the real-time signals are sparse, therefore, the signal
can be reconstructed using a system of equations such that
the smaller number of samples is used. It is important that
it satisfies the restricted isometric property (RIP). A recursive
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weighted minimum norm with focal underdetermined sys-
tem solver (FOCUSS) is used to achieve sparsity in the prob-
lem of source localization [19]. In [20], a hardware has been
developed for spectral estimation using CS framework.

Normally, in the CS, we are required to find a sparse sig-
nal using an overcomplete dictionary. This concept can also
be applied to source localization problem where spatial spar-
sity is exploited; the source is sparse in the spatial domain
means that if it is not present at every angle, hence, the con-
cept of CS can be applied due to the sparsity of source. The
source localization can be done using single or multiple mea-
surements to achieve super resolution. For multiple measure-
ments, the computational complexity increases with the
amount of data growing in a system. Different methods are
present for solving multiple measurement problems.

One of the main issues with the source localization using
CS is to define the resolution of the grid [21]. It is assumed
that the location of the sources falls on the resolution of the
grid defined. However, this is not always possible or practical.
There may be a scenario when the location of the source does
not coincide with the resolution of the grid defined. This cre-
ates a grid mismatch or off-grid targets. There are different
methods available to solve this problem; one of them is iter-
ative grid refinement. In iterative grid refinement, the grid
resolution is changed until the dense grid mitigates the grid
mismatch. One of the main drawbacks of using iterative grid
refinement is that decreasing the grid resolution may not
comply with the RIP condition. The other approach to
resolve grid mismatch problem is off-grid sparse method
[22]. In this process, initial grid resolution is still defined.
The DOA of the sources is not restricted to the grid. A bias
is added to the signal model using first order approximation
of the manifold matrix. The new model may be nonconvex
and difficult to solve. Iterative grid refinement is one of the
most used methods. However, it requires a method to best
select the discretization value for the grid. Therefore, in this
paper, a method based on the distribution of the source
energy due to grid mismatch is presented to calculate the dis-
cretization value for the grid. The main contributions of the
paper are summarized as follows.

(i) A novel framework for solving grid mismatch or off-
grid target is presented for DOA estimation problem
using CS technique

(ii) A fitness function is introduced based on the differ-
ence of source energy between adjacent grids due to
grid mismatch in DOA estimation

(iii) An approach for finding the best discretization value
using the designed objective function is presented
for iterative grid refinement

(iv) The proposed scheme is viably tested for multiple
sources with different energy and spatial resolution-
based scenarios in DOA estimation

The rest of the article is organized as follows. The math-
ematical background for DOA estimation using MUSIC
algorithm is presented in Section 2, while in Section 3, com-
pressive framework for DOA estimation is presented. In Sec-
tion 4, the proposed algorithm is provided, and results along
with necessary discussion are presented in Section 5. The
concluding remarks are given in Section 6.

2. DOA Estimation

In this section, a general model for direction of arrival (DOA)
estimation based on a subspace technique for DOA estima-
tion is presented. Let us consider a uniform linear array
(ULA) as shown in Figure 1 with N number of antenna ele-
ments, and the distance between the antenna element is λ/2,
while there are P number of far field sources at different
angles, θl. Then, the received signal at them

th antenna element
is given as

ym tð Þ = 〠
P

i=1
si tð Þej m−1ð Þkd sin θi , ð1Þ

where si is the amplitude of the signal that is received. k and d
are wave number and distance between the antenna elements.

Then, Equation (1) can be written as

y =As: ð2Þ

In the presence of noise, the received signal is updated as

y =As + n, ð3Þ

where n is the Gaussian noise, A is the steering vector, and y
is the received vector. As mentioned earlier, there are number
of ways to solve Equation (3) like MUSIC and MVDR. If it
satisfies the Nyquist sampling rate, the correlation of the
received matrix is given as

R = E yyH
� �

,

R = E As + nð Þ As + nð ÞH� �
,

ð4Þ
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Figure 1: Signal model for uniform linear array.
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which is

R =ARsAH + Rn: ð5Þ

Then, accordingly, the spatial spectrum is given as

p θð Þ = 1
aH θð ÞeneHn a θð Þ , ð6Þ

where en is the eigen vector orthogonal to the steering vector.
The performance of the MUSIC algorithm degrades with the
reduction in the number of the samples and presence of a
noise. In the next section, we will look at the CS approach
to the DOA estimation.

3. Compressive Sensing

The concept and mathematical development of compressive
sensing for DOA estimation are briefly presented in this sec-
tion. In CS framework, a sparse representation of the signal
can be reconstructed only from a small number of samples.
Let us consider a signal s, a discrete signal which is sparse
in certain domain sεℂN×1 and y is the received signal of
dimension M such that yεℂM×1. Then, received signal with-
out noise is given as

y =As: ð7Þ

Here, A is a sensing matrix of dimension AεℂM×N , where
M≪N . We count the number of nonzeros elements in a sig-
nal s, which is given by ksk0 also known as l0—norm. This
leads to a nonlinear programming (NP) hard problem. To
solve NP problem, many approximation methods have been
developed. One of the methods is to use l1 or lp relaxation. If
the unknown signal s is considered sparse, then the optimiza-
tion problem can be mathematically represented as

s =min sk kps:ty =As, ð8Þ

considering p = 0, then the above equation will be an NP
hard problem. While considering p = 1, we can recast it
as an l1—norm problem and solve it using Equation (9).

s =min y −Ask k22 + λ sk kp: ð9Þ

In practical scenario, there is always a noise. Now, if
the received signal is contaminated with a noise n, then,
(7) is rewritten as

y =As + n, ð10Þ

and the optimization problem becomes

min sk k1s:t y −Ask k22 < ε, ð11Þ

where ε is a parameter that specifies how much noise is
allowed. To formulate the problem in the CS framework,
consider Figure 2 [23], where the spacing between the
antenna elements is d which is λ/2. As the goal is to find
the location of the sources, we consider a ULA with nar-
row band signal for K number of sources and M number
of antenna elements. The received signal is given in (1).
As seen in Figure 2, to cast this in the sparse representa-
tion problem, an overcomplete dictionary of array steering
vector A is introduced, where A = ½θ1, θ2,⋯, θN �, N is the
sampling of the grid. The N will be much higher than K .
Therefore, the matrix A is given as

A =

1 1 : : : 1
ejkd sin θ1 ejk sin θ2 : : : ejk sin θN

: : : : : :

: : : : : :

: : : : : :

ej m−1ð Þkd sin θ1 ej m−1ð Þkd sin θ2 : : : ej m−1ð Þkd sin θN

2
666666666664

3
777777777775

:

ð12Þ

One of the main issues with application of CS in the
DOA problem is definition of the grid resolution. The res-
olution depends upon the sampling grid formulation, and
the sampling grid is uniform. If the grid size is defined
very fine, it increases the computational requirements. If
the size of the sampling grid is large, then the resolution
decreases, and close targets cannot be detected.

4. Proposed Methodology

In this section, we propose a methodology for the selection
of discretization value for the grid. Considering Figure 3,
the upper grid represents the resolution of the grid with dis-
cretization value of r = θn+1 − θn, while θL represents the
location of the source.

The first step is to estimate the vector s using the over-
complete dictionary defined for the iteration

si =min y −Ais
�� ��2

2 + λ sk k1: ð13Þ

Z

X

𝜃

N

#M#2#1

1
2

Figure 2: DOA model for CS.
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Due to grid mismatch, the energy of the source is distrib-
uted among the adjacent grids as shown in Figure 4. The dis-
cretized grid resolution is 1° defined, and the location of the
source is 60.4°. The energy of the source distributed among
the adjacent grids is mathematically presented as

Ei = EθK
− EθK+1

�� ��: ð14Þ

SetInitial grid resolution of 1°

Calculate the over complete dictionary
Select fitness function equal zero
Estimate regularization term λ using GCV

While (Fi ≥ Fi+1)
Estimate si according to Equation (13)
Calculate Fi according to Equation (15)
Change grid resolution
Calculate dictionary Ai+1

Estimate si+1
Calculate Fi+1

end while
Output:ri

Algorithm 1: Proposed Algorithm.
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Figure 5: DOA estimation using MUSIC.
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Figure 6: DOA estimation using CS.
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Figure 7: Ambiguity due to grid Mismatch Problem.
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Let i be the iteration index in which the discretization
value is ri. The peaks in the vector s are detected, and the dif-
ference is taken as in Equation (14).

Fi = Ei: ð15Þ

Then, the process is repeated with i + 1th iteration with
finer grid discretized value and with dictionary defined with
new discretization value. The fitness function is calculated as

Fi+1 = Ei+1: ð16Þ

A termination criterion is defined asset as

Fi ≥ Fi+1: ð17Þ

If it satisfies the termination criteria, then the discretiza-
tion value in the ith iteration is the best value for the grid to
discretize at. For the case of multiple sources, Equation (14)
can be generalized for sum of the difference of adjacent peaks
and sum of individual peaks if there is no adjacent peak. As
mentioned, i is the iteration number. In each iteration, the
discretization value is reduced. It is selected by the user. In

our simulations, we have selected a discretization value of 1,
0.5, 0.1, and 0.01. The main steps involved in the proposed
algorithm are given as follows.

The regularization term λ in (13) plays important role for
the accuracy of the solution and must be estimated. It is a
compromise between finding a solution that is sparse as pos-
sible and has lower error as possible. Two methods for esti-
mating the regularization term are L curve and generalized
cross validation (GCV). In GCV, it is more convenient as
compared to L curve where we must find the corner [24]. It
can be computed using the following relations.

GCV λð Þ = Asλ − yk k2
trace I −AA#� �2 ,A# = ATA + λI

� �−1AT , sλ =A#y:

ð18Þ

The GCV estimate is variant of the above equation which
is obtained by applying necessary calculation and results in
GCV function [25]. This technique estimates λ by assuming
that the optimum value of λ should be chosen to minimize
GCV value.

Table 1: Grid mismatch case for two sources.

Amplitude and location Grid resolution 1° Grid resolution 0.5° Grid resolution 0.1°

Amplitude

Source # 1 = 2
A1 0.7830

A1 1.999 A1 1.998
A2 1.3208

Source # 2 = 1
A3 0.4061

A2 0.999 A2 0.998
A4 0.4905

Location

40.5°
θ1 40°

θ1 40.5° θ1 40.5°
θ2 41°

43.5°
θ3 43°

θ2 43.5° θ2 43.5°
θ4 44°

Fitness F1 = 0:6221 F2 = 2:999 F3 = 2:998
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Figure 8: Three sources of grid mismatch case.
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Figure 9: Four sources of grid mismatch problem.
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5. Simulation Results

We start our simulations with MUSIC algorithm. In Figure 5,
the results of the two sources based on DOA estimation are
presented that are at an angle of 20° and°. The received signal
SNR is 20 dB, and the number of antenna elements is 10. We
consider the performance of the algorithm for different num-
ber of samples. The number of samples is 50 and 3. It is
observed that as the number of the samples decreases, the
detection performance degrades, and the targets are not
distinguishable.

Next, we consider CS techniques for solving the DOA
problem. Considering a single sample at T = 1, we create an

overcomplete dictionary having a resolution of 1°. The loca-
tion of the targets can be resolved by solving Equation (9)
with the help of linear programming. We use convex optimi-
zation toolbox for solving this problem. For simplicity, we
consider a noiseless case. It is shown in Figure 6 that two tar-
gets with amplitude of 2 and 1 on normal scale at location 20°

and 23° are resolved.
Next, we consider a scenario in which the target locations

are not aligned with the grid resolution. Considering two tar-
gets, one is at 40.5° with amplitude 2, and the other is at 43.5°

with amplitude 1. In Figure 7, it is shown that the four targets
are detected. This creates ambiguity about the location of the
targets and the number of the targets. However, it is observed

Table 2: Grid mismatch case for two sources with finer resolution.

Amplitude and location Grid resolution 1°
Grid resolution

0.5°
Grid resolution

0.1°
Grid resolution

0.01°

Amplitude

Source # 1 = 2
A1 0.9797 A1 0.3381

A1 1.9988 A1 1.9916
A2 1.1367 A2 1.6696

Source # 2 = 1
A3 0.5718 A3 0.5718

A2 0.9987 A2 0.991
A4 0.3312 A4 0.3122

Location

40.4°
θ1 40° θ1 40°

θ1 40.4° θ1 40.4°
θ2 41° θ2 40.5°

43.3°
θ3 43° θ3 43°

θ2 43.3° θ2 43.3°
θ4 44° θ4 43.5°

Fitness F1 = 0:4167 F2 = 1:4934 F3 = 2:9975 F4 = 2:9827

Table 3: Grid mismatch case for four sources.

Amplitude and location Grid resolution 1°
Grid resolution

0.5°
Grid resolution

0.1°
Grid resolution

0.01°

Amplitude

Source # 1 = 2
A1 1.1805 A1 0.3951

A1 1.9998 A1 1.9991
A2 0.8286 A2 1.6061

Source # 2 = 2
A3 1.2950 A3 0.7604

A2 1.9997 A2 1.9977
A4 0.7080 A4 1.2409

Source # 3 = 2
A5 0.7446

A5 1.9054 A3 1.9990 A3 1.9923
A6 1.2663

Source # 4 = 2
A7 0.2037 A6 1.0556

A4 1.9951 A4 1.9631
A8 1.7768 A7 0.9408

Location

30.4°
θ1 30° θ1 30°

θ1 30.4° θ1 30.4°
θ2 31° θ2 30.5°

43.3°
θ3 43° θ3 43°

θ2 43.3° θ2 43.3°
θ4 44° θ4 43.5°

60.5°
θ5 60°

θ5 60.5° θ3 60.5° θ3 60.5°
θ6 61°

80.7°
θ7 80° θ6 80.5°

θ4 80.7° θ4 80.7°
θ8 81° θ7 81°

Fitness F1 = 3.0338 F2 = 3.7118 F 3 = 7.9938 F4 = 7.9523
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that the amplitude of the received signal is distributed in the
adjacent grid. To solve this, the proposed algorithm is used.

The fitness function is calculated for the pair of adjacent
peaks. Then, the grid resolution is changed and again solved
with the new dictionary elements, and the fitness function is
calculated. The new fitness function calculated is compared
with the previous one. If the fitness function increases, the
steps are repeated; otherwise, we conclude that the optimized
value has been reached, and the true location of the targets
have been estimated as shown in Table 1.

Next, we consider a scenario for three and four numbers
of sources in the DOA estimation problem. Initially, the grid
resolution is taken to be 1°. It is assumed that the targets are
not aligned with the grid resolution which again creates
ambiguity about the number of the sources as shown in
Figures 8 and 9. Table 1 shows the iterations for solving the
grid mismatch problem using the proposed algorithm.

Next, we consider a different case, where finer resolution
is required to detect the sources. Two sources are considered

with locations at 40.4° and 43.3° and amplitude of 2 and 1
shown in Table 2. Similarly, four off-grid sources are consid-
ered in Table 3, where we present the results for a scenario of
four sources at locations 30.4°, 43.3°, 60.5°, and 80.7°. The
results show that the location of the sources is accurately esti-
mated using the proposed algorithm.

As shown in the tables with the help of the fitness func-
tion, best discretization value for the grid is calculated. As
mentioned, to address the basis mismatch, off-grid sparse
method is also used. The signal model for the off-grid target
with bias is given in [26, 27]. The minimization problem
can be written as

min
s,δ

y − A + BΔð Þsk k22 + λ sk k, ð19Þ

where B = ½bðθ1Þ,⋯, bðθNÞ� and bðθnkÞ is the derivative of a
ðθkÞ with respect to θnk. Δ = diag ðδÞ = ½δ1,⋯, δN �T . δ is the
difference between the nearest grid point and the direction
of the kth signal.

In Figure 10, we consider two targets located at 30:5° and
60:5°. The regularization parameter for each SNR level is cal-
culated using the GCV method. The mean square error
(MSE) of the DOA estimation of the proposed method is
compared with Cramer Rao lower bound (CRLB) for DOA
estimation and off-grid method with bias. For a greater
SNR-based scenario, the proposed algorithm is reasonable
accurate. Additionally, the proposed approach is simpler
and requires less computations.

In Figure 11, we compare the iterations for grid refine-
ment with MSE. We consider two targets at 30.5° and 60.5°,
where the grid is refined in each iteration. The resolution of
the grid for each iteration is 1°, 0.5°, and 0.1°. It is observed
that the MSE is the lowest for 0.5° grid resolution. Although
the targets are detected for grid resolution of 0.1°, the MSE
increases due to the RIP condition.

In Figure 12, we show the overall process flow structured
diagram of the proposed study.

6. Conclusion

Compressive sensing is an interesting technique for finding
the location of the sources using sensor array. However, the
definition of the grid is a challenge. If the location of the tar-
get coincides with the grid resolution, it is detected, whereas
if not, then the signal power of the source is distributed
among the adjacent grids. This creates ambiguity about the
location of the target. In this paper, we presented an iterative
grid refinement mechanism based on a fitness function. The
fitness function governs the extent of the grid refinement.
When the maximum value of the fitness function is reached,
we conclude further refinement of the grid is not required,
and the ambiguity about the location of the target is removed.
Thus, the best discretization value for the grid is calculated.
In the future work, this technique can be applied for multiple
input multiple output radar system [28].
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Figure 12: Graphical abstract of the proposed study.
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