
Academic Editors: Jao-Hwa Kuang,

Bing-Jean Lee, Ming-Hung Hsu,

Thin-Lin Horng and Chia-

Cheng Chao

Received: 25 February 2025

Revised: 4 April 2025

Accepted: 16 April 2025

Published: 23 April 2025

Citation: Aslam, L.; Zou, R.; Awan,

E.S.; Hussain, S.S.; Shakil, K.A.; Wani,

M.A.; Asim, M. Hardware-Centric

Exploration of the Discrete Design

Space in Transformer–LSTM Models

for Wind Speed Prediction on

Memory-Constrained Devices.

Energies 2025, 18, 2153.

https://doi.org/10.3390/

en18092153

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Hardware-Centric Exploration of the Discrete Design Space in
Transformer–LSTM Models for Wind Speed Prediction on
Memory-Constrained Devices
Laeeq Aslam 1, Runmin Zou 1,*, Ebrahim Shahzad Awan 2, Sayyed Shahid Hussain 1 , Kashish Ara Shakil 3,* ,
Mudasir Ahmad Wani 4 and Muhammad Asim 4,5

1 School of Automation, Central South University, Changsha 410083, China; 204608004@csu.edu.cn (L.A.);
shahid@csu.edu.cn (S.S.H.)

2 School of Engineering, Design and Built Environment, Western Sydney University,
Penrith, NSW 2747, Australia; ebrahimawan@gmail.com

3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4 EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University,
Riyadh 11586, Saudi Arabia; mwani@psu.edu.sa (M.A.W.); masim@psu.edu.sa (M.A.)

5 School of Electronic Information, Central South University, Changsha 410083, China
* Correspondence: rmzou@csu.edu.cn (R.Z.); kashakil@pnu.edu.sa (K.A.S.)

Abstract: Wind is one of the most important resources in the renewable energy basket.
However, there are questions regarding wind as a sustainable solution, especially concern-
ing its upfront costs, visual impact, noise pollution, and bird collisions. These challenges
arise in commercial windmills, whereas for domestic small-scale windmills, these chal-
lenges are limited. On the other hand, accurate wind speed prediction (WSP) is crucial for
optimizing power management in renewable energy systems. Existing research focuses
on proposing model architectures and optimizing hyperparameters to improve model
performance. This approach often results in larger models, which are hosted on cloud
servers. Such models face challenges, including bandwidth utilization leading to data
delays, increased costs, security risks, concerns about data privacy, and the necessity of
continuous internet connectivity. Such resources are not available for domestic windmills.
To overcome these obstacles, this work proposes a transformer model integrated with Long
Short-Term Memory (LSTM) units, optimized for memory-constrained devices (MCDs).
A contribution of this research is the development of a novel cost function that balances
the reduction of mean squared error with the constraints of model size. This approach
enables model deployment on low-power devices, avoiding the challenges of cloud-based
deployment. The model, with its tuned hyperparameters, outperforms recent methodolo-
gies in terms of mean squared error, mean absolute error, model size, and R-squared scores
across three different datasets. This advancement paves the way for more dynamic and
secure on-device wind speed prediction (WSP) applications, representing a step forward in
renewable energy management.

Keywords: wind speed prediction; power forecasting; hyperparameter tuning; model size
optimization; renewable energy management; on-device deployment

1. Introduction
Wind energy is an important alternative to fossil fuels and contributes significantly

to the global renewable energy capacity. The Global Wind Report 2022 [1] noted a 94 GW
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increase in wind energy in 2021, although growth slowed in major markets like China
and the United States. Offshore wind saw significant expansion, particularly in China.
However, one of the significant challenges in wind energy management is intermittency,
which refers to the unpredictable nature of wind. Wind speeds, influenced by weather
patterns, fluctuate throughout the day, resulting in inconsistent power output. However,
this problem is usually managed by predicting wind speed in advance and then managing
the integration of other available resources with the wind energy system for sustainable
power generation. Various prediction techniques have been developed, which can be
categorized into physical models, statistical models, and machine learning (ML) models.

Numerical Weather Prediction (NWP) models use physical principles for wind speed
prediction (WSP), eliminating the need for historical data and model training. These models
simulate atmospheric conditions to provide location-specific forecasts, as demonstrated
by Brabec et al. [2]. However, their performance is sensitive to initial physical conditions,
where minor errors can affect results. Another study by Moreno et al. [3] pointed out
the complexity and high computational costs associated with NWP models. Additionally,
accurate input data and substantial computational resources are required, since inaccuracies
in initial atmospheric data can lead to forecast errors. Nevertheless, when integrated into
hybrid models, NWP models become valuable tools for wind speed prediction, particularly
in regions lacking historical wind data [2,4].

On the other hand, statistical models treat WSP as a stochastic process, using historical
data to identify time-variable relationships. Common statistical models include autoregres-
sive (AR), moving average (MA), autoregressive integrated moving average (ARIMA), and
the Kalman filter [5]. These models have been applied extensively due to their simplicity
and relatively low computational cost. However, they assume linear relationships, which
may not accurately capture the nonlinear characteristics of wind speed (WS) time series.
Torres et al. [6] applied an ARMA model to predict the hourly mean WS in Spain, demon-
strating that although such models provide reasonable short-term forecasts, they struggle
with the nonlinear and random nature of wind speeds. Li et al. [7] utilized ARMA-based
approaches for WSP, showing that these models can be effective under certain conditions
but have limitations in capturing complex wind patterns. Collectively, these statistical
models contribute to understanding WS patterns by providing a foundational approach to
time-series analysis. However, their limitations in capturing nonlinearity and randomness
highlight the need for more advanced methods that can model the complex behavior of
wind speeds.

Machine learning (ML) models, including artificial neural networks (ANNs), support
vector machines (SVMs), and deep learning methods, have been applied in wind speed
prediction (WSP) for their ability to model nonlinear relationships [8]. Unlike statistical
models, ML models do not assume the normality of the residuals or the stationarity of
the time series. ANNs model wind speed as a nonlinear system, as demonstrated by
Bechrakis [9] and Mohandes et al. [10], who showed the potential of SVMs for WSP. These
models capture patterns in wind speed data but require large datasets and significant
computational power for training. Deep learning models, such as LSTM networks, capture
long-term dependencies in wind speed data. Combining these approaches can improve
prediction accuracy. Hybrid models (HM) integrate various techniques to maximize their
benefits. Geng et al. [11] used LSTM networks for short-term WSP, achieving higher
accuracy than traditional methods. Cai et al. [12] applied Extreme Gradient Boosting
(XGBoost) for WSP, effectively handling large datasets and using regularization to prevent
overfitting. Aslam et al. [13] proposed a physics-informed machine learning approach with
a novel cost function to enhance WSP by collecting features from surrounding locations
to predict future wind speeds. ANNs and SVMs model nonlinear relationships, while
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LSTM and XGBoost handle sequential data and large datasets, respectively. Together, these
techniques improve prediction accuracy and model complex wind speed behaviors.

Hybrid models combine multiple approaches to leverage their strengths and address
individual limitations. HMs often combine statistical models with ML techniques, such
as ARIMA with ANNs or SVMs, to improve prediction quality [14]. Recent studies have
enhanced time-series data pre-processing using Singular Spectrum Analysis (SSA) and
wavelet transforms to increase model accuracy [15]. Advances in HMs include transformer
models, initially developed for natural language processing, applied to WSP. Wan et al. [16]
and Pan et al. [17] integrated convolutional neural networks (CNNs) with LSTM networks
to capture spatial and temporal dependencies in wind speed data. An attention mechanism
was added to these models to focus on relevant parts of the input sequence, improving
forecasting accuracy [18]. By combining different methodologies, HMs provide a balanced
approach that enhances the accuracy and reliability of WSP, effectively managing the
complexities and nonlinearity in wind speed data.

Since intermittency is just one challenge related to wind energy utilization, some of
the other fundamental challenges in wind power production include visual impact [19–21],
noise pollution [22,23], bird and bat collisions [24–26], upfront costs [27–29], and grid
integration [30,31]. These issues primarily arise in commercial wind energy projects and
raise questions about the sustainability of wind energy as a solution. Although these
challenges are significant for commercial wind energy projects, increasing domestic small-
scale windmill installations can reduce the impact of these problems.

In existing studies such as [32–34], the challenge of intermittency and prediction
is mostly studied in the context of commercial windmills, which can afford large cloud
servers to run sophisticated ML models for accurate predictions. In these projects, the
focus is on improving prediction accuracy, and the size of the models is not a significant
concern. For small windmills, however, accessing a server to run such models presents
issues like latency, data privacy, security, bandwidth usage, cloud server costs, and energy
consumption. Therefore, designing smaller models that predict WS with minimal error
could avoid these challenges and efficiently manage energy locally. Deploying ML models
on edge devices is a potential solution, but this area has not been well studied in the context
of domestic wind energy production. Addressing these challenges for small windmills, this
research investigates a discrete design space (DDS) comprising the hyperparameters of a
transformer–LSTM hybrid model in such a way that not only is the prediction accuracy of
such models improved but also the size of the models is significantly reduced.

The primary contributions of this research are summarized as follows:

• The proposal of a hybrid baseline model (HBM) that combines a transformer model
with LSTM, designed for optimal tuning with variable hyperparameters.

• The introduction of a novel cost function and use of genetic algorithms for optimizing
discrete design spaces (DDS) influenced by model hyperparameters.

• The incorporation of hardware-specific performance evaluations at each optimization
step, ensuring effective deployment on targeted hardware.

This research enhances the understanding and application of transformer–LSTM mod-
els for wind speed prediction on low-power devices. It investigates the trade-offs between
model size (MS) and prediction accuracy, providing solutions to challenges associated with
memory constraints and performance optimization.

2. Proposed Methodology
This study utilizes a baseline model with two main components: a transformer encoder

and LSTM layers. The transformer encoder extracts features by handling complex data
patterns, while the LSTM layers, as the prediction head, capture temporal dependencies.
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This section first details the transformer–LSTM baseline architecture and then discusses
model performance metrics, which are integral to the cost and fitness functions. Finally, a
hardware-centric DDS optimization scheme is presented.

2.1. Baseline Architecture

The baseline model’s architecture is shown in Figure 1. First, the input features pass
through a dense embedding layer. This layer changes the dimensions of the input data
using Equation (1):

Dimension = NH × HS (1)

Here, NH is the number of heads and HS is the head size.

Figure 1. Block diagram of the proposed baseline model.

Next, positional embeddings are added using sinusoidal functions:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(2)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(3)

where pos is the position in the sequence, i is the dimension index, and dmodel represents
the dimensions. Then, the features pass through the multi-head attention mechanism:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

where Q, K, and V are the query, key, and value matrices, and dk is the dimension of
the keys. This computes attention scores, focusing on key parts of the input data. Next,
the features pass through a 1D convolutional neural network (CNN) layer that applies a
ReLU activation function, adding nonlinearity to help the model learn complex patterns.
Following the CNN layer, an add-and-normalize layer is used:

Layer Output = LayerNorm(Input + Output) (5)

This layer normalizes the data, stabilizing the learning process. The model then
concatenates TB transformer blocks, each with a multi-head attention mechanism, a CNN
layer, a feed-forward network, and an add-and-normalize layer. Next, a layer of MLP dense
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units is added. These dense layers enhance the representation. The features then pass
through more dense layers, adjusting dimensions to match the number of time stamps. This
is followed by a reshape layer, which organizes features by time stamps. The final dense
layer allocates features to specific time stamps for better prediction accuracy. Finally, a layer
of LSTM units acts as a regression head to predict future events, which is suitable for tasks
like forecasting wind speeds. The LSTM uses several gates to manage information flow:

ft = σ(W f · [ht−1, xt] + b f ) (6)

it = σ(Wi · [ht−1, xt] + bi) (7)

ot = σ(Wo · [ht−1, xt] + bo) (8)

C̃t = tanh(WC · [ht−1, xt] + bC) (9)

Ct = ft · Ct−1 + it · C̃t (10)

ht = ot · tanh(Ct) (11)

Equations (6)–(11) show how the LSTM manages information. The forget gate ( ft)
discards irrelevant data, the input gate (it) updates the cell state with new information, and
the output gate (ot) outputs part of the cell state. These mechanisms help the LSTM make
accurate predictions based on historical data.

This baseline model is better than a purely LSTM or transformer model because it
leverages the strengths of both architectures. The transformer’s attention mechanism excels
at capturing contextual relationships in the data, while the LSTM is adept at handling long-
term dependencies in sequential data. This combination allows the model to effectively
address both short-term and long-term patterns, leading to more accurate predictions.

2.2. Model Performance Metrics

The performance of the model is quantitatively assessed using various metrics, such
as MSE, MAE, R2 score, the model’s storage size on disk and its latency. The formulas for
these metrics are as follows:

Coefficient of Determination (R2 Score):

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (12)

Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1
|yi − ŷi| (14)

In the above equations, yi denotes the actual wind speed, ŷi denotes the predicted WS,
and ȳ denotes the average of the actual wind speed. MSE is sensitive to larger errors due
to its squaring of error terms. In contrast, MAE is sensitive to the median of errors as it
considers the absolute value of errors.
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2.3. Cost and Fitness Functions

The proposed baseline model has the ability to capture time-series data patterns.
However, such models have a high MS if not properly optimized. Hence, there is a trade-off
between prediction accuracy, quantified by the MSE and MS. Navigating this balance can
be seen as the optimization of a DDS. Unlike in a continuous space, where we have infinite
options for selecting parameter values, choices in a DDS are quantized, offering only a finite
set of possibilities. The pivotal components of our model, all within this DDS, comprise
the following:

• Head Size (HS): Influences the granularity of attention and overall model capacity.
• Number of Heads (NH): Enables concurrent attention mechanisms, facilitating the

model’s understanding of diverse data facets.
• Feed-Forward Dimension (FF): Signifies the inner processing capability of the feed-

forward network within the transformer.
• Number of Transformer Blocks (TB): Multiple blocks augment the model’s depth,

enhancing its ability to discern complex patterns.
• MLP Units (MLPU): Governs the capacity of the dense layers within the model.
• Dropout (DO): Acts as a regularization knob in the transformer encoder section.
• MLP Dropout (MLPD): Acts as a regularization knob in the dense layer section,

mitigating the risk of overfitting.
• LSTM Units (LSTMU): Determines the temporal processing power of the LSTM layers.

Considering these parameters, the optimization problem is given by Equation (15).

min
A

C such that AX− C = 0 (15)

where
X =

[
HS NH FF TB MLPU DO MLPD LSTMU

]T
(16)

represents the known configurations of the model, consolidated into a column vector. Our
objective is to identify the optimal coefficient matrix A to minimize the cost C. The cost
metric C symbolizes the equilibrium between accuracy and MS, as defined in Equation (17):

C = ϵ×
(

MSE
α

)
+ (1− ϵ)×

(
Size of Model

β

)
(17)

where ϵ varies between 0 and 1, serving as a balancing agent between the model’s predictive
prowess (MSE scaled by α in m/s) and its computational footprint (size of model scaled by
β in bytes).

Each column of A is subject to specific upper threshold constraints and has different
data type requirements: 0 ≤ A1 ≤ mhs, 0 ≤ A2 ≤ mnh, 0 ≤ A3 ≤ mffd, 0 ≤ A4 ≤ mnb,
0 ≤ A5 ≤ mmlpu, 0 ≤ A6 ≤ mdo, 0 ≤ A7 ≤ mmlpdo, 0 ≤ A8 ≤ mlstmu. Here,
the upper limits (mhs, mnh, mffd, etc.) represent the maximum permissible value of
each parameter (Max_Head_Size, Max_Number_of_Heads, etc.), ensuring the model’s
feasibility and efficiency within the specified constraints.

In this work, a genetic algorithm (GA)-inspired technique is employed to identify
models that minimize prediction error while also maintaining a minimal size. Consequently,
we have devised a fitness function that incorporates an additional constraint to ensure
model effectiveness. This constraint ensures that the model achieves a positive R2 score,
which is a standard metric for assessing the goodness of fit in regression models. The
fitness function, therefore, integrates this additional criterion and is formulated as shown
in Equation (18):

Fitness = C− λ× R2 score (18)
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This method ensures that the chosen model balances accuracy and size while meeting
a basic standard of predictive performance, as measured by the R2 score.

2.4. Hardware-Centric DDS Optimization Scheme

In this section, the proposed hardware-centric DDS optimization algorithm is dis-
cussed. The proposed methodology is shown graphically in Figure 2. This scheme is based
on the optimization principles of the genetic algorithm. The details of the proposed scheme
are as follows:

1. A genetic algorithm initiates a random generation of models, where each gene rep-
resents a specific aspect of the model and one chromosome is represented as X in
Equation (16). Once these models are generated, they are passed through a con-
straint check.

2. These models are then built and trained for a limited duration of 25 epochs. Af-
ter training, they are deployed on a memory-constrained device to evaluate their
performance along with the test data.

3. The fitness of these models is calculated based on the test results, using Equation (18),
where λ is a Lagrange multiplier that penalizes models with a negative R2 score after
25 epochs.

4. The GA process for generating new models involves selection, mutation, and crossover
by considering the following criteria:

• If there is an improvement in performance over the last three generations, the two
best models (minimum fitness values) are selected for mutation and crossover.

• If performance does not improve, the best parent and a second randomly selected
gene are used for mutation and crossover.

• During mutation or crossover, if any gene exceeds its predefined limits, a random
value within the permissible range is reassigned to maintain the MS within the
required memory space.

5. The process returns to step 2 unless a stopping criterion is met.
6. Finally, the top five models from the experiment are selected for further training

over an extended number of epochs. They are then re-evaluated on the memory-
constrained device to ascertain their final performance metrics.

In this work, models are trained on a server and tested on MCDs like the Jetson.
This dual-environment and hardware-centric approach is more practical compared to the
standard procedure of a neural architecture search, where models are trained and tested
simultaneously on the same machine, typically a server. In our research, models are trained
on servers to accelerate the training process and then tested on the actual hardware. Since
results may vary when models are deployed on such devices, testing them before selecting
the best parent ensures the selection of solutions that are optimal for the specific hardware.
To transfer the trained models from the server to the Jetson device, Google’s gRPC protocol
is employed, ensuring efficient and reliable model transfer.

Training lasts for 25 epochs to quickly assess model behavior and adaptability. A
model’s performance during this period, as indicated by the MSE and R2 scores, deter-
mines its potential for further development or the need for reevaluation. Predefined
limits on hyperparameters prevent training failures in memory-constrained environments,
ensuring that models remain within available memory space and are practical for real-
world deployment.

Furthermore, an adaptive genetic algorithm strategy introduces new random genes
when performance stagnates over three generations. This keeps the search space diverse
and dynamic, promoting exploration and increasing the chance of finding effective models.
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Hence, the top five models are selected based on initial performance metrics for extended
training beyond 25 epochs. This approach ensures that promising candidates are refined fur-
ther. The computational complexity of the proposed algorithm is analyzed in Appendix A.
To facilitate a better understanding of the methodology, the pseudocode in Algorithm 1
succinctly outlines the scheme.

Algorithm 1 Hardware-centric DDS optimization algorithm

Require: N (population size), E (maximum epochs), S (stopping criteria)
Ensure: Optimized models M∗

1: P← Initialize(N) ▷ Generate initial population
2: G ← 0 ▷ Generation counter
3: while ¬StoppingCriteria(G, S) do
4: for all m ∈ P do
5: Train(m, E)
6: Eval(m)
7: m.φ← ϵ×MSE(m) + (1− ϵ)× Size(m)− λ× R2(m)
8: end for
9: P′ ← ∅ ▷ New population

10: if Improved(P, 3) then
11: {p1, p2} ← SelectBest(P, 2)
12: else
13: {p1, p2} ← {SelectBest(P, 1), SelectRandom(P)}
14: end if
15: for i← 1 to N/2 do
16: {c1, c2} ← Crossover(p1, p2)
17: Mutate(c1)
18: Mutate(c2)
19: Constraint(c1)
20: Constraint(c2)
21: P′ ← P′ ∪ {c1, c2}
22: end for
23: P← P′

24: G ← G + 1
25: end while
26: M∗ ← SelectTop(P, 5)
27: ExtendedTraining(M∗)
28: ReEval(M∗)
29: return M∗

Figure 2. Block diagram of the proposed scheme.
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3. Results and Comparative Analysis
This section discusses the results and conducts a comparative analysis of our proposed

methodology, starting with a detailed overview of the datasets and parameter configurations.

3.1. Datasets and Parameter Configuration

The datasets used in this research were compiled by the National Renewable Energy
Laboratory (NREL) and focus on three significant locations in Pakistan: Gwadar, Pasni,
and Jhimpir. Despite being the fifth-most populous country, Pakistan has faced an energy
crisis for decades, and the resources available to the government are insufficient to install
commercial windmills. Instead, domestic small-scale windmills are installed by the local
government with a lower budget, supporting the United Nations Sustainable Development
Goals (SDGs), particularly SDG 7 (Affordable and Clean Energy).

The datasets contain meteorological variables at 60-min intervals, including tem-
perature, wind speed (WS), wind direction, atmospheric pressure, and cloud type. This
study focuses on DDS for MCD, targeting one-step-ahead forecasts. The dataset was pre-
processed to include measurements from the past 24 h and then normalized. The model
aimed to estimate the WS (in m/s) for the upcoming 25th hour, denoted as ŷi. After predic-
tion, denormalization transformed ŷi back to the actual scale to determine the real-world
wind speed, yi.

The maximum values for the model parameters are represented as a row vector amax:
mhs = 512, mnh = 16, mffd = 8, mnb = 8, mmlpu = 256, mdo = 1, mmlpdo = 1,
and mlstmu = 128. Thus, amax = [512, 16, 8, 8, 256, 1, 1, 128]. The models were trained
on an Nvidia GeForce RTX 3080 Ti and, to ensure practical deployment on MCDs, the
models were optimized for Nvidia Jetson Nano devices. The Nvidia Jetson Nano device
is designed for edge computing and features a quad-core ARM Cortex-A57 CPU and
an integrated GPU, making it energy-efficient and suitable for real-time applications in
renewable energy management.

3.2. Results

In this study, the parameter λ in Equation (18) was set to 0.001. Additionally, α was
set to 1 m/s, and β was set to 1,048,576 Bytes. These parameter values were intuitively
determined by evaluating the performance of the baseline model, which has the maximum
possible size for hyperparameters. Additionally, five distinct experiments were conducted,
each varying the value of ϵ in Equation (18). The chosen values for ϵ in these experiments
were 0.01, 0.25, 0.5, 0.75, and 0.99. In the experiment where the value of ϵ was 0.01, the
primary focus was on minimizing the MS, with negligible concern for the MSE. As the
value of ϵ increased to 0.25, there was a noticeable shift in priority, with greater emphasis
on reducing MSE while lessening the importance of MS. This trend continued with higher
values of ϵ; as ϵ increased, the significance given to minimizing MSE grew, consequently
reducing the emphasis on the size of the model.

Initial training over 25 epochs yielded five distinct models for each case. Upon fine-
tuning these models using the dataset from Gwadar city, results were obtained for varying
values of epsilon. These results are depicted in Figures 3–7. Each figure comprises six
subplots: the first subplot summarizes the results of the five models, while the remaining
five subplots detail the DDS each model occupies. For instance, Figure 3 features a model
in the first row and second column, highlighted in purple, with the optimal parameters
X = [310, 5, 2, 2, 100, 0.21, 0.31, 37]. The notation ‘NH 5/16’ indicates that the optimal
number of heads is 5, within the maximum allowed limit of 16.
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3.2.1. Experiment with ϵ = 0.01

Figure 3 showcases the top five models for ϵ = 0.01, focusing on the trade-off between
MS and performance. The most efficient model achieved an impressive balance with a total
cost of 0.28, an MSE of 0.11 m/s, and an MS of only 0.28 MB. The second model, with a
total cost of 0.33, an MSE of 0.22 m/s, and an MS of 0.33 MB, showed an increase in both
size and MSE. This makes it a less favorable choice, as it does not efficiently balance the
trade-off between size and performance.

Totalcost: 0.282, MSE: 0.106, Model Size: 0.284

Totalcost: 0.325, MSE: 0.221, Model Size: 0.326

Totalcost: 0.451, MSE: 0.078, Model Size: 0.455

Totalcost: 0.459, MSE: 0.058, Model Size: 0.463

Totalcost: 0.461, MSE: 0.062, Model Size: 0.465

HS 
  310/512

NH 
  5/16

FF 
  2/8

TB 
  2/8

MLPU 
  100/256

DO 
  0.21/1

MLPD 
  0.31/1

LSTMU 
  37/128

Cost: 0.282

HS 
  145/512

NH 
  4/16

FF 
  4/8

TB 
  6/8

MLPU 
  110/256

DO 
  0.36/1

MLPD 
  0.71/1

LSTMU 
  22/128

Cost: 0.325

HS 
  147/512

NH 
  7/16

FF 
  5/8

TB 
  3/8

MLPU 
  237/256

DO 
  0.89/1

MLPD 
  0.49/1

LSTMU 
  26/128

Cost: 0.451

HS 
  443/512

NH 
  4/16

FF 
  5/8

TB 
  4/8

MLPU 
  163/256

DO 
  0.13/1

MLPD 
  0.14/1

LSTMU 
  22/128

Cost: 0.459

HS 
  213/512

NH 
  4/16

FF 
  6/8

TB 
  4/8

MLPU 
  87/256

DO 
  0.94/1

MLPD 
  0.21/1

LSTMU 
  87/128

Cost: 0.461

Top 5 Models for  = 0.01

Figure 3. Top five models for ϵ = 0.01.

In contrast, the third model demonstrated a significant improvement in performance
at the expense of increased size. It registered a total cost of 0.45, an MSE of 0.08 m/s, and an
MS of 0.45 MB, indicating a substantial enhancement in accuracy for a reasonable increment
in MS. The fourth and fifth models, with slightly different sizes of 0.46 MB and 0.47 MB
but identical total costs of 0.46 and MSEs of 0.06 m/s, showcased a consistent level of high
performance for these larger models.
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3.2.2. Experiment with ϵ = 0.25

Figure 4 presents the top five models for ϵ = 0.25, for which the balance between
MS and performance was considered under different criteria compared to the earlier
experiment. The best-performing model in this setup achieved a total cost of 0.29, an MSE
of 0.06 m/s, and an MS of 0.36 MB, demonstrating an efficient balance between accuracy
and compactness. The second model exhibited a total cost of 0.31, an MSE of 0.09 m/s, and
an MS of 0.38 MB. This model indicates a preference for a slightly larger size while still
maintaining high accuracy.
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Totalcost: 0.462, MSE: 0.047, Model Size: 0.601
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Top 5 Models for  = 0.25

Figure 4. Top five models for ϵ = 0.25.

Moving to the third model, it presented a total cost of 0.39, an increased MSE of
0.26 m/s, and an MS of 0.44 MB. This suggests a shift toward accommodating a larger MS
in exchange for a moderate increase in error rates. The fourth model showed an increase
in both total cost (0.44) and MS (0.48 MB) but with a slightly higher MSE of 0.3 m/s,
indicating a trade-off for a larger MS against a marginal increase in error performance.
Interestingly, the final model, despite having the largest size at 0.6 MB, achieved a low
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MSE of 0.05 m/s and a total cost of 0.46. This outcome suggests that a larger MS can
significantly improve accuracy, albeit at the cost of increased resource consumption. The
detailed optimal parameters for these models are depicted in Figure 4.

3.2.3. Experiment with ϵ = 0.50

In the experiment characterized by ϵ = 0.5, as illustrated in Figure 5, a distinct set of
outcomes was observed, indicating a more balanced trade-off between MS and performance.
The first model achieved a total cost of 0.25, an MSE of 0.05 m/s, and an MS of 0.44 MB,
demonstrating a favorable balance between accuracy and size.
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Figure 5. Top five models for ϵ = 0.5.
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The second model, with a slightly larger size of 0.46 MB, also recorded a total cost of
0.25 but achieved a slightly lower MSE of 0.04 m/s, indicating an incremental improvement
in accuracy. Moving on to the third model, the total cost rose to 0.3, the MSE to 0.04 m/s,
and the MS to 0.56 MB. This model indicates a preference for a larger size while maintaining
a low error rate, balancing cost and performance.

The fourth model, significantly larger at 0.8 MB, demonstrated a total cost of 0.42 and
an MSE of 0.04 m/s. This indicates a considerable enhancement in accuracy, which comes
with a substantial increase in size. Finally, the fifth model, with a size of 0.85 MB, showed a
total cost of 0.44 and an MSE of 0.04 m/s. Although similar in size to the fourth model, it
presented a slightly higher total cost, making it slightly less efficient in comparison. The
detailed parameters for these models, including their specific configurations, are further
elucidated in Figure 5.

3.2.4. Experiment with ϵ = 0.75

The experiment with ϵ = 0.75, as shown in Figure 6, revealed a compelling set of
results, emphasizing a greater focus on model accuracy while also considering MS. The
first model in this series achieved a total cost of 0.218, an MSE of 0.05 m/s, and an MS of
0.721 MB, indicating a shift toward prioritizing accuracy while maintaining a moderately
large size.

The second model, with an MS of 0.927 MB, had a total cost of 0.267 and an MSE of
0.047 m/s, indicating a further enhancement in accuracy but a noticeable increase in size.
Advancing to the third model, the total cost rose to 0.324, the MSE to 0.076 m/s, and the
MS to 1.065 MB, reflecting a continued emphasis on reducing the error rate, albeit at the
expense of larger model dimensions.

The fourth model, at 1.191 MB, showed a cost of 0.343 and an MSE of 0.06 m/s. Despite
its size, it balanced size and accuracy well. The fifth model, the largest at 1.311 MB, recorded
a cost of 0.368 and an MSE of 0.054 m/s. Although it was the largest, it maintained good
accuracy, illustrating a balance between size and performance. The details of these models
are shown in Figure 6.

3.2.5. Experiment with ϵ = 0.99

The final experiment, with ϵ = 0.99, as shown in Figure 7, represents an approach
with an emphasis on reducing MSE while placing minimal constraints on MS. Hence, the
first model achieved a total cost of 0.059, an MSE of 0.047 m/s, and an MS of 1.217 MB,
showing a significant emphasis on accuracy. The second model, with a total cost of 0.062,
an MSE of 0.05 m/s, and a slightly smaller size of 1.163 MB, maintained a similar level of
accuracy with a marginal reduction in size.

Moreover, the third model, with a total cost of 0.063, an MSE of 0.057 m/s, and a
smaller MS of 0.655 MB, presented a better balance between size and accuracy compared
to its predecessors. The fourth model, at 0.781 MB, showed a higher cost of 0.177 and
an MSE of 0.171 m/s, indicating improvements in both size and accuracy. Finally, the
fifth model, despite a slightly smaller size of 0.719 MB, recorded the highest cost of 0.207
and an MSE of 0.202 m/s. This highlights the difficulty of optimizing for high accuracy
while maintaining a reasonable MS. Detailed insights into the model configurations and
trade-offs are provided in Figure 7.
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Figure 6. Top five models for ϵ = 0.75.

This experiment revealed the top five models for each epsilon value, highlighting
the trade-offs. For example, in Experiment 1 with ϵ = 0.01, an MSE of 0.08 m/s or less is
acceptable. We also limited MS to under 500 KB. The third model is suitable with a size
of 0.455 MB and an MSE of 0.078 m/s. This approach emphasizes that model selection
depends on specific application requirements and constraints.
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Totalcost: 0.059, MSE: 0.047, Model Size: 1.217
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Figure 7. Top five models for ϵ = 0.99.

3.3. Performance of Optimal Models Across Datasets

The models and results presented above were derived using the Gwadar dataset.
However, when these models, configured with their optimal hyperparameters, were trained
and tested on data from the other two datasets, Jhimpir and Pasni, they also exhibited
acceptable performance, as shown in Table 1.
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Table 1. Performance of optimal models across datasets.

Dataset ϵ Size (MB) MSE (m/s) MAE (m/s) R2 Latency (s)

Jhimpir

0.01 0.2862 0.0848 0.2180 0.9732 0.0848
0.25 0.3812 0.0932 0.2284 0.9706 0.0341
0.50 0.4587 0.0442 0.1573 0.9860 0.1557
0.75 0.7232 0.0442 0.1573 0.9860 0.1620
0.99 1.2104 0.0451 0.1583 0.9858 0.6929

Gwadar

0.01 0.2836 0.1065 0.2404 0.9600 0.0915
0.25 0.3643 0.0568 0.1744 0.9786 0.1992
0.50 0.4416 0.0522 0.1654 0.9804 0.1773
0.75 0.7211 0.0498 0.1591 0.9850 0.3022
0.99 1.2168 0.0470 0.1592 0.9823 0.6224

Pasni

0.01 0.2849 0.5513 0.5620 0.7900 0.0876
0.25 0.3829 0.6610 0.6160 0.7514 0.0311
0.50 0.4413 0.5412 0.5892 0.7964 0.1610
0.75 0.7233 0.3263 0.4346 0.8772 0.2982
0.99 1.2107 0.2856 0.4065 0.8925 0.6639

3.4. Analyzing the Influence of ϵ on Model Metrics

This section explores the relationship between the parameter ϵ and various model
performance indicators, specifically MSE, MAE, R2 score, and MS. Figure 8 graphically
presents these relationships, allowing for a comprehensive comparison of how changes
in ϵ affect each metric. As can be seen, a trend emerged showing that an increase in ϵ led
to changes in both MSE and MAE, demonstrating the direct impact of ϵ on minimizing
these error metrics. Furthermore, a positive correlation between ϵ and the R2 score was
also observed, suggesting improved predictive performance with larger ϵ values, and the
MS increased with the value of ϵ.
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Figure 8. Impact of varying ϵ values on MSE, MAE, MS, and R2 score.

3.5. Comparison

This section compares the proposed optimal model with three existing schemes. First,
this work compares DeepAR [35], an autoregressive recurrent neural network model for
probabilistic forecasting, with our proposed scheme. The second model for comparison
is a CNN-based probabilistic forecasting framework [36]. Lastly, this work investigates
the CNN-LSTM model [37], which integrates a CNN and an LSTM network for wind
power prediction.
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As shown in the results of the comprehensive comparative analysis presented in
Table 2, the proposed scheme consistently outperformed existing models like DeepAR,
DeepTCN, and CNN-LSTM across all datasets. For example, on the Jhimpir dataset, our
proposed scheme achieved up to a 98.78% reduction in size, a 51.89% improvement in
MSE, a 31.80% improvement in MAE, and a 9.80% increase in the R2 score compared to
DeepAR. Similar trends were observed on the Gwadar and Pasni datasets, with substantial
improvements across all metrics. Specifically, compared to DeepTCN on the Gwadar
dataset, the proposed scheme showed a 92.24% reduction in size, a 32.66% better MSE, an
18.15% better MAE, and a 3.52% higher R2 score. Similarly, on the Pasni dataset, compared
to CNN-LSTM, the proposed scheme demonstrated a 90.18% reduction in size, a 43.07%
improvement in MSE, a 23.60% improvement in MAE, and an 18.29% increase in the R2

score. The predicted versus actual data for each dataset are shown in Figures 9–11.

Figure 9. Performance comparison of DeepAR, DeepTCN, CNN-LSTM, and the proposed scheme on
the Jhimpir dataset. The x-axis represents samples recorded at 1 h intervals, and the y-axis represents
the wind speed (m/s).

Figure 10. Performance comparison of DeepAR, DeepTCN, CNN-LSTM, and the proposed scheme on
the Gwadar dataset. The x-axis represents samples recorded at 1 h intervals, and the y-axis represents
the wind speed (m/s).
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Figure 11. Performance comparison of DeepAR, DeepTCN, CNN-LSTM, and the proposed scheme
on the Pasni dataset. The x-axis represents samples recorded at 1 h intervals, and the y-axis represents
the wind speed (m/s).

Table 2. Comparison with existing schemes.

Dataset Scheme Size (MB) MSE (m/s) MAE (m/s) R2

Jhimpir

DeepAR [35] 100.3615 0.0921 0.2321 0.8974
DeepTCN [36] 15.6832 0.0751 0.2075 0.9332
CNN-LSTM [37] 12.6971 0.0793 0.2251 0.9162
Proposed Scheme 1.2104 0.0451 0.1583 0.9858

Gwadar

DeepAR [35] 100.3628 0.0903 0.2561 0.9600
DeepTCN [36] 15.6756 0.0698 0.1945 0.9489
CNN-LSTM [37] 12.6348 0.0815 0.2678 0.8756
Proposed Scheme 1.2168 0.0470 0.1592 0.9823

Pasni

DeepAR [35] 100.5483 0.4361 0.5620 0.7900
DeepTCN [36] 15.6540 0.4275 0.4598 0.8219
CNN-LSTM [37] 12.3256 0.5017 0.5321 0.7545
Proposed Scheme 1.2107 0.2856 0.4065 0.8925

4. Conclusions
In this study, a Hybrid Baseline Model (HBM) was developed, integrating transform-

ers for feature extraction with Long Short-Term Memory (LSTM) networks for time-series
forecasting, specifically tailored for wind speed prediction (WSP) on low-power, memory-
constrained devices (MCDs). The combination of transformers and LSTM networks en-
hanced the model’s ability to extract features and process sequential data, as evidenced
by significant reductions in mean squared error (MSE) and mean absolute error (MAE)
compared to existing methods. A novel cost function was introduced, effectively manag-
ing the trade-offs between prediction accuracy and model size (MS), which is crucial for
deployment on devices with limited resources. The results demonstrated up to a 92.24%
reduction in model size and a 51.03% improvement in MSE over traditional models like
DeepAR, highlighting the effectiveness of the proposed approach. The successful real-time
deployment on Jetson Nano devices further confirmed the practical applicability of the
model. Training on a server and testing on MCDs ensured both accuracy and feasibility for
real-world scenarios. Additionally, the use of a genetic algorithm for iterative optimization
based on actual test results further enhanced the model’s performance and adaptability.
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Appendix A
The computational complexity of the hardware-centric discrete design space optimiza-

tion scheme is derived through a sequential analysis of its fundamental operations. Let
P represent the population size, G the number of generations, N the count of trainable
parameters, D the training dataset size, α the testing data fraction (0 < α ≤ 1), and S the
one-time hardware initialization time.

The total computational cost comprises three principal components. First, the hard-
ware setup requires a fixed initialization duration O(S). Second, per-generation costs
accumulate through simulation training and hardware testing. Training dominates compu-
tational effort through forward/backward passes over the full dataset, scaling as O(PND).
Testing incurs inference costs proportional to the subset αD, yielding O(αPND). Genetic
operations exhibit linear population scaling O(P). Aggregating these components across G
generations produces

Ctotal = O(S) + G · [O(PND) + O(αPND) + O(P)] (A1)

For large-scale deployments, where D ≫ 1, lower-order terms become negligible,
simplifying to

Ctotal ≈ O(S + GPND) (A2)

Table A1. Computational complexity classification.

Component Complexity Type Scaling Behavior Dominance

Hardware Setup Constant O(S) Negligible
Training Cubic O(PND) Most Dominant
Testing Cubic (Reduced) O(αPND) Significant
Genetic Operations Linear O(P) Least Significant
Total Asymptotic Cost Cubic × Linear O(S + GPND) Training-Driven

Practical implementation constraints emerge from this analysis. Memory limitations
on edge devices cap model size at N ≤ 105 parameters for 4GB RAM systems. Parallel
evaluation across K devices reduces the effective computation time to O(S + GPND

K ), while

https://www.nrel.gov/
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testing subset reduction (α→ 0) trades evaluation reliability for faster iterations. These con-
straints necessitate balancing the population size P, generations G, and model complexity
N against available hardware resources.
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