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ABSTRACT Accurate wind speed prediction (WSP) remains essential for optimizing energy management
in small-scale domestic windmills. Server-dependent machine learning models, commonly deployed in wind
farms, prove infeasible for domestic systems due to high costs and energy demands. While edge computing
offers a viable alternative, currentWSPmethods prioritize hyperparameter optimizationwithout constraining
model size (MS), resulting in memory-intensive architectures incompatible with resource-limited devices.
To address this gap, we propose a framework that co-optimizes the discrete hyperparameter spaces of Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Temporal Convolutional Network (TCN)
models under strict memory constraints. An adaptive Simulated Annealing algorithm with memory-based
rejection (aSAR) navigates the discrete design space, employing nine objective functions that balance Mean
Absolute Percentage Error (MAPE) against model compactness. Evaluations on wind datasets from Chile,
Kazakhstan and Mongolia demonstrate that aSAR-optimized models reduce prediction errors by up to
54.17% and decrease MS by 98.75% relative to state-of-the-art techniques. The results highlight significant
regional performance variations, underscoring the necessity of location-specific architecture selection. This
work establishes a systematic approach for deploying memory-efficient WSP models on edge devices,
advancing sustainable energy solutions for decentralized wind power systems.

INDEX TERMS Adaptive simulated annealing, deep learning, edge devices, hyperparameter optimization,
renewable energy, wind speed prediction.

I. INTRODUCTION
Wind energy is an important renewable energy source, with
the global installed capacity reaching 837 gigawatts (GW)
in 2021, showing an annual growth rate of 17% [1], [2].
Wind energy works by turning the kinetic energy of wind into
mechanical power or electricity, which can be used to power
homes, businesses and industries. Unlike fossil fuels, wind
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energy does not produce greenhouse gases or other pollutants
during operation, making it a key part of the shift to clean
energy and reducing climate change. Accurate prediction of
wind speed(WS) is crucial for the effective management of
wind energy systems. The efficiency and reliability of wind
power generation depend directly onWSP because the energy
produced by wind turbines is proportional to the cube of the
WS [3]. Therefore, precise WSP is essential for optimizing
grid stability, improving the scheduling of energy production
and reducing reliance on fossil fuels [4], [5]. Moreover,
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addingwind energy in grids addsmore sustainable energy and
helps in reducing carbon footprint of electricity generation.

A. EXISTING RESEARCH
Methods for WSP can be categorized into physical mod-
els, statistical models, machine learning (ML) models
and hybrid models. Physical models, such as Numerical
Weather Prediction (NWP) models, rely on atmospheric
data and meteorological readings for WSP. These models
are suitable for long-term predictions but require accurate
boundary and initial conditions [6], [7]. However, their
dependency on parameterization schemes and the accuracy
of initial conditions limits their effectiveness for short-
term forecasts [8], [9]. Further, other physical models like
the Mesoscale Model 5 and the Weather Research and
Forecasting model, which use numerical simulations, excel
in long-term predictions but are computationally intensive,
making them less suitable for short-term WSP [10], [11].
In contrast, statistical methods use historical wind speed
data along with environmental features such as tempera-
ture and pressure for prediction. Common models include
autoregressive moving average (ARMA) and integrated
autoregressive moving average (ARIMA), which identify
trends in historical data [12], [13]. ARMA and ARIMA
models, due to their use of auto-correlation, have gained
significant attention inWSP prediction, with studies showing
that ARIMA models can outperform neural networks [14].
Additionally, ARIMA-ARCH and ARMA models have been
proposed to address heteroskedasticity, a common issue in
wind speed prediction(WSP) due to seasonal wind patterns
and complex weather interactions [15]. However, multiple
studies [16], [17] have shown that, while statistical models
outperform other methods for long-term WSP, they struggle
with short-term fluctuations and nonlinear effects typical
of wind speed, making them less effective for unstable
short-term WSP.

Machine learning (ML) techniques such as artificial neural
networks (ANNs), support vector machines (SVMs) and deep
learning architectures gain attention by effectively modeling
these nonlinear relationships without boundary condition
assumptions [18], [19]. For example, Moreno et al. [20]
use ANNs’ ability to uncover nonlinear patterns in wind
speed data, while Mohandes et al. [19] demonstrate SVMs’
robustness and predictive accuracy. More recently, multiple
studies optimize long short-term memory (LSTM) networks
to capture long-term temporal dependencies, surpassing
traditional approaches like support vector regression [21],
[22], [23]. Additionally, methods such as Extreme Gradient
Boosting (XGBoost) prove effective for handling large
datasets and mitigating overfitting through regularization
[24]. Physics-informed ML approaches further enhance
prediction precision by integrating spatial features and
custom loss functions [25].
Recent research explores the combination of different

model architectures to take advantage of their complementary

strengths, resulting in more powerful and robust WSP
solutions. These hybrid models integrate traditional statistical
methods with machine learning algorithms to enhance
both accuracy and reliability. For example, Liu et al. [26]
demonstrate that coupling ARIMA with ANNs or SVMs
yields superior predictive performance. Building on this, later
studies incorporate advanced preprocessing techniques such
as Singular SpectrumAnalysis (SSA) and wavelet transforms
to further improve prediction quality [27]. Moving beyond
classical hybrids, researchers combine multiple deep learning
models, for instance, convolutional neural networks (CNNs)
with long- and short-term memory (LSTM) networks to
effectively capture spatial and temporal features in wind
speed data [28], [29]. More recently, transformer models
enhanced with feature selection techniques apply to WSP,
utilizing attention mechanisms to prioritize the most relevant
input sequences and thereby improve forecasting accuracy
[30], [31], [32].

B. LIMITATIONS OF EXISTING WORK
Current WSP research focuses primarily on optimizing
deep learning models [21], [22], [23], [33], [34] or hybrid
architectures [35], [36] to improve prediction accuracy.
These methods assume deployment on servers with sufficient
memory to store model checkpoints and perform inference.
Such online servers suit large commercial wind farms, which
justify the bandwidth and infrastructure costs. However, these
farms face challenges aligned with United Nations Sustain-
able Development Goals, including noise pollution [37], [38],
operational expenses [39], [40], [41], visual impact [42], [43],
[44], and grid integration difficulties [45], [46]. Small-scale
turbines reduce these challenges by operating independently,
requiring minimal grid connection and incurring lower costs.
Deploying server-dependent WSP models on small-scale
systems reduces their economic viability, as remote inference
demands costly infrastructure. This situation creates a
need for WSP models optimized jointly for accuracy and
compactness, enabling deployment on memory-limited edge
devices such as the Jetson Nano.

Recent work proposed by aslam at el. [47] partially
addresses this need by proposing a hybrid model optimized
for size and accuracy via linear objective functions. Two key
limitations remain. First, a single baseline model is designed
is optimized for a single site but applied universally, over-
looking spatial variability caused by topography, seasonal
changes, pressure gradients and mesoscale dynamics. Unlike
stable data domains(solar irradiance), wind patterns vary
widely across regions and no single architecture performs
well everywhere. Second, scalability issues arise under
high-variability conditions. Although the hybrid model fits
edge constraints on low-variability data, its complexity
grows substantially in complex environments such as moun-
tainous or coastal areas, exceeding edge device memory.
Therefore, effective small-scale WSP deployment requires
location-specific model architectures optimized within strict
memory limits.
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C. CONTRIBUTIONS
To address these limitations, this work proposes a
location-specific optimization of fundamental time series
prediction architectures, including recurrent models (LSTM,
GRU) and temporal models Temporal Convolutional Net-
work (TCN). It shows that comprehensive optimization of
these models, under size constraints, can result in models
that are not only smaller in size, but also outperform larger
models for specific locations. In this research, the discrete
hyperparameter space of LSTM, GRU and TCN models is
optimized specifically for memory-constrained devices using
aSAR. The main contributions of this research are as follows:
• This work optimizes the discrete hyper-parameter space
of LSTM, GRU and TCN models for WSP on memory-
constrained devices, using nine objective functions,
including exponential scaling, linear weighted com-
bination, inverse scaling, quadratic penalty, harmonic
mean, logarithmic combination, product of inverses,
focal loss-inspired and combined log-linear objective
functions.

• The aSAR algorithm is proposed that optimizes hyper-
parameters, model architectures and feature selection for
WSP. It dynamically adjusts the number of key features
using the Pearson correlation coefficient and determines
the optimal input time stamps for the dataset. Addi-
tionally, aSAR incorporates a memory-based rejection
mechanism, which tracks previously rejected solutions
to prevent revisiting suboptimal regions of the solution
space. This memory mechanism ensures more efficient
exploration by adding a penalty for solutions that are
too similar to those already rejected. By applying aSAR
to wind speed datasets from Kazakhstan, Mongolia and
Chile, the algorithm improves prediction accuracy and
efficiency, addressing challenges such as computational
constraints and model complexity in small-scale appli-
cations.

• The top three models from each objective function are
first extensively trained using the datasets and then
evaluated using the Analytic Hierarchy Process (AHP),
which ranks them based on MAP (MAPE) and MS. The
topmodels for each dataset are identified as aSAR-TCN,
aSAR-LSTM and aSAR-LSTM, collectively referred to
as aSAR-Models.Finally the best architecture among
these models can be deployed on memory constrained
devices.

The rest of the paper is structured as follows: Section II
discusses the proposedmethodology, Section III discusses the
results of the proposed method and Section IV concludes the
overall work.

II. PROPOSED METHODOLOGY
This work proposes a methodology for optimizing predictive
models in WSP by integrating model size (MS) and Mean
Absolute Percentage Error (MAPE) into nine objective
functions. These functions optimize three baseline models,
Temporal Convolutional Networks (TCNs), Long Short-Term

Memory networks (LSTMs) and Gated Recurrent Units
(GRUs), balancing accuracy and computational efficiency.
These models were selected for their complementary
strengths in temporal modeling, TCNs capture long-range
dependencies via dilated convolutions, while LSTMs/GRUs
excel at learning sequential patterns through gated mecha-
nisms, both critical for wind speed’s time-varying dynamics.
The optimized models are evaluated and ranked using
the Analytic Hierarchy Process (AHP), which compares
their performance based on accuracy and complexity. The
best-performing models are analyzed to identify the most
suitable architecture for each location, selecting the model
and hyperparameters that best fit the dataset.The hyperpa-
rameter space is discrete, as parameters are either categorical
(e.g., activation functions) or integer-valued (e.g., layer
count, units per layer), disallowing continuous optimization
techniques such as use of KKT conditions with gradient-
based methods. Although the adaptive estimator method
proposed by Tutsoy et al. [48] can be used for hyperparameter
learning by framing it as an adaptive control problem, its
practical use is limited. This is because it assumes linear
system dynamics and relies on temporal difference learning,
which leads to slow convergence and poor conditioning
in the discrete hyperparameter space. Therefore, heuristic
or metaheuristic algorithms are necessary to explore this
discrete space efficiently. Hence, this work proposes use of
the aSAR algorithm to optimize this discrete hyperparameter
space. The methodology aims to outperform traditional
time-series prediction models by prioritizing computational
efficiency through compact architectures and optimized
hyperparameters. The overall approach is illustrated in
Figure 1.

A. OPTIMIZATION OBJECTIVES
The primary goal is to explore the discrete hyper-parameter
space of LSTM, GRU and TCNmodels to enhance prediction
accuracy while minimizing MS. We introduce nine objective
functions that balance these criteria. Before describing them,
we define the accuracy metric as MAPE, which evaluates a
model’s predictive error in relative terms and is defined by

MAPE =
1
N

N∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣× 100, (1)

where Yi is the actual wind speed at time i, Ŷi is the forecasted
wind speed and N is the number of observations. Because
MAPE divides the absolute error by the actual value, it is
scale-independent and can be used across datasets of different
magnitudes. It remains interpretable as it reflects proportional
error instead of absolute difference. Its reliance on absolute
values, rather than squared terms, makes it less sensitive to
large outliers, although very small Yi values can inflate its
ratio.

We propose nine objective functions that combine MAPE
and MS in distinct ways. The parameter ϵ often appears as a
control knob to adjust the influence of MS relative to MAPE,
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FIGURE 1. Overall block diagram of the proposed methodology.

while some formulations include additional parameters that
further shape the trade-off. The first objective function, the
Linear Weighted Combination (LWC), is given by

fLWC(Y , Ŷ ,MS) = (1− ϵ)MAPE − ϵ ln(MS), (2)

and adds a log-based penalty for MS to MAPE in a linear
fashion. The parameter ϵ splits attention between accuracy
and MS, with larger ϵ penalizing size more heavily. LWC
keeps these terms additive, providing a straightforward trade-
off, although the subtraction of ϵ ln(MS) can sometimes
produce abrupt changes when balancing improvements in
MAPE against the size penalty.

Next, the Inverse Scaling (IS) function,

fIS(Y , Ŷ ,MS) =
MAPE

1+ ϵ ln(MS)
, (3)

divides MAPE by 1 + ϵ ln(MS). This setup restrains
overly large architectures because the denominator increases
gradually with ln(MS), smoothing out the penalty for
moderate expansions. Unlike a linear subtraction, embedding
the size term in the denominator can enforce more continuous
and incremental penalization of complexity.

The Logarithmic Combination (LC) function,

fLC(Y , Ŷ ,MS) = ln
(
1+MAPE

)
− ϵ ln

(
1+ ln(MS)

)
, (4)

applies a logarithmic transform to both MAPE and MS.
This moderates the effect of large values since both the error
term andMS are smoothed inside log operations. Large jumps
in MAPE or MS thus do not immediately cause extreme

changes in the objective, providing a gentler constraint on
expansion than ratio- or difference-based methods.

Meanwhile, the Combined Log and Linear (CLL) function,

fCLL(Y , Ŷ ,MS) = ln
(
1+MAPE

)
− ϵ MS, (5)

applies a logarithmic term to MAPE but penalizes MS
linearly. This can be more aggressive than using ln(MS) if
ϵ is large, because the subtraction by ϵ MS grows quickly
with model complexity. Unlike LC, CLL can therefore offer
a stronger disincentive for large architectures, though it may
over-penalize size in certain contexts if ϵ is not finely tuned.
Another formulation is theHarmonicMean (HM) function,

fHM(Y , Ŷ ,MS) =
2MAPE

MAPE+
(

1
ln(MS)

) , (6)

which weaves MAPE and an inverse log of MS into a
harmonic mean. This structure encourages both terms to
remain small since the harmonic mean is dominated by
larger denominators. In practice, it can push models toward
balancing improved accuracy and reasonable size, rather than
excelling at one objective at the cost of the other.

The Quadratic Penalty (QP) function,

fQP(Y , Ŷ ,MS) = MAPE− ϵ
(
ln(MS)

)2
, (7)

imposes a squared-log penalty on MS. Relative to a
direct ln(MS) term,

(
ln(MS)

)2 grows more quickly once
MS becomes large, creating a sharper incentive to keep
models smaller. However, ϵ must be chosen carefully to avoid
ignoring accuracy altogether.
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An exponential approach is taken by the Exponential
Scaling (ES) function,

fES(Y , Ŷ ,MS) = MAPE ·MS−ϵ, (8)

Because MS−ϵ quickly decreases the objective as MS
grows, strongly disfavoring large architectures. Compared
with a ratio-based penalty, ES compresses MAPE through
multiplication and tuning ϵ adjusts how severely it dampens
the score for larger models.

An alternative multiplicative structure arises in the Product
of Inverses (PI) function,

fPI(Y , Ŷ ,MS) = MAPE ·
1− ϵ

ln(MS)
, (9)

Here, a reciprocal ln(MS) factor heavily penalizes growth
in MS. A slight increase in MS causes ln(MS) to rise,
shrinking its reciprocal and thereby reducing the score. This
can be stricter than adding or subtracting a long term, though
its exact impact depends on how quickly ln(MS) grows and
on ϵ.

Finally, the Focal Loss Inspired (FLI) function,

fFLI(Y , Ŷ ,MS) = MAPEγ (1− ϵ) − ϵ
(
ln(MS)

)α
, (10)

incorporates exponents γ and α to further shape how each
term behaves. Raising MAPE to γ can either concentrate
on reducing moderate errors or amplify smaller ones, while
(ln(MS))α targets the size penalty. This extra flexibility
requires more tuning but allows one to place highly
customized emphasis on accuracy versus complexity.

These nine functions offer varied strategies for balancing
model accuracy and MS in neural network hyper-parameter
optimization. Each has parameters that must be adjusted
according to the specific goals of a project, whether that is
prioritizing minimal error, reducing complexity, or achieving
a practical compromise between the two. By selecting and
tuning an appropriate objective function, one can guide
the learning process toward models that efficiently capture
patterns while remaining suitably lightweight.

B. DISCRETE HYPER-PARAMETER SPACE
This section describes the discrete hyper-parameter space
for LSTM, GRU and TCN models. The goal is to opti-
mize model performance by exploring hyper-parameters,
including architecture and input parameters. Since the
recurrent models, including LSTM and GRU, share almost
the same hyperparameters, they are discussed in a separate
subsection, while TCN, which has different hyperparameters,
is addressed in another subsection. The input feature section
is presented separately.

1) DISCRETE HYPER-PARAMETER SPACE FOR RECURRENT
MODELS
In LSTM models, the architecture consists of three gates:
forget, input and output. The forget gate determines which
information to discard:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
, (11)

where σ is the sigmoid function, ht−1 is the previous hidden
state and xt is the current input. The input gate regulates
updates to the cell state:

it = σ
(
Wi · [ht−1, xt ]+ bi

)
, (12)

and the candidate cell state is computed as:

C̃t = tanh
(
WC · [ht−1, xt ]+ bC

)
. (13)

The cell state updates as:

Ct = ft · Ct−1 + it · C̃t , (14)

and the output gate determines the next hidden state:

ot = σ
(
Wo · [ht−1, xt ]+ bo

)
, (15)

yielding:

ht = ot · tanh
(
Ct

)
. (16)

The GRU model simplifies the LSTM by merging the
forget and input gates into an update gate and using a reset
gate. The update gate is defined as:

zt = σ
(
Wz · [ht−1, xt ]+ bz

)
, (17)

and the reset gate as:

rt = σ
(
Wr · [ht−1, xt ]+ br

)
. (18)

Key hyperparameters for LSTM and GRU models include
the number of layers (N), units per layer, dropout rate (D)
and activation function (A). The number of layers controls
network depth, affecting its ability to learn complex patterns.
More layers may improve performance but increase MS
and computational cost. Similarly, more units per layer
enhance performance but raise MS and training time. The
dropout rate prevents overfitting by deactivating neurons
during training. Higher dropout rates reduce overfitting but
may hinder learning, while lower rates risk overfitting. The
activation function introduces non-linearity, with choices like
ReLU, tanh, or sigmoid impacting performance and training
efficiency.

2) DISCRETE HYPER-PARAMETER SPACE FOR TEMPORAL
CONVOLUTIONAL MODELS
The TCN model uses temporal convolutions with hyperpa-
rameters such as the number of filters F , kernel size Ks and
dilation factors 1. A dilated convolution is defined as:

yt =
k−1∑
i=0

wi · xt−d ·i. (19)

Increasing filters or kernel size enlarges the receptive field,
improving temporal dependency capture but increasing MS.
Dilations and padding expand the receptive field without
linearly increasing parameters, balancing complexity and
performance.
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3) INPUT FEATURE SELECTION
Since each model receives spatio-temporal input for a given
terrain, certain input features, such as temperature from the
north, may have a greater impact on wind speed compared to
features from other directions. However, this effect depends
on the terrain. Hence, while optimizing parameters, this work
dynamically adjusts K and selects the top K input features.
These features are chosen based on their Pearson correlation
with the target variable (wind speed):

r =

∑
(Xi − X̄ )(Yi − Ȳ )√∑

(Xi − X̄ )2
∑

(Yi − Ȳ )2
, (20)

where Xi and Yi are sample points and X̄ and Ȳ are
their means. Selecting strongly correlated features improves
accuracy and reduces complexity. A smaller K reduces
computational cost, while a larger K may improve accuracy
at the expense of complexity.

The sequence length T determines the temporal span
the model learns from. Longer sequences capture more
dependencies but increase computational burden, while
shorter sequencesmaymiss long-term patterns. Optimizing T
balances temporal depth and efficiency. Table 1 summarizes
the constraints and ranges for each hyper-parameter, guiding
optimization to improve performance and efficiency.

C. ADAPTIVE SIMULATED ANNEALING WITH
MEMORY-BASED REJECTION MECHANISM
Simulated Annealing with Rejection (SAR) is an optimiza-
tion technique and can be used for optimal hyperparameter
search. The algorithm starts with an initial high-temperature
T0 to facilitate exploration of the solution space. At each
iteration, a new solution is generated by perturbing the current
solution. If the new solution has a lower cost, it is accepted;
otherwise, it is accepted with a probability given by:

P(1E,T ) = exp
(

1E
T

)
(21)

where1E = current_cost−new_cost is the difference in cost
between the current and the new solutions. The temperature
T is gradually decreased according to a cooling schedule:

T = T0 × αk (22)

where α is the cooling rate and k is the iteration number.
The algorithm continues until the temperature reaches a
stopping threshold Tstop or after a set number of iterations N ,
as indicated by the termination condition:

T ≤ Tstop or iteration ≥ N (23)

This structure allows SAR to balance exploration and
exploitation, accepting worse solutions early in the process to
escape local minima and refining solutions as the temperature
decreases. However, SAR suffers from premature conver-
gence, especially when the solutions become concentrated
around local optima, leading to inefficient exploration.
Additionally, the fixed cooling schedule does not adjust

based on the solution diversity, which may hinder further
exploration when the search space still has unexplored
regions. These issues motivate the need for a more adaptive
approach.

To overcome this challenge, this work proposes an adaptive
SAR (aSAR) algorithm in which the cooling rate adjusts
dynamically based on the diversity of the current solutions.
Specifically, the temperature update is adjusted using the
fitness variance σ 2

k of the solutions at iteration k , which is
defined as:

σ 2
k =

1
N

N∑
i=1

(fi − f̄ )2 (24)

where fi is the fitness of the i-th solution, f̄ is the average
fitness and N is the number of solutions. When the fitness
variance is large, the solutions are diverse and the algorithm
maintains a higher temperature to encourage exploration.
As the variance decreases and the solutions converge, the
temperature decreases more rapidly to focus on exploitation.

The cooling rate modifies as:

αk = α0 ×

(
1+ β × σ 2

k

)
(25)

where α0 is the base cooling rate and β is a hyperparameter
controlling the influence of the fitness variance. The temper-
ature update equation becomes:

Tk+1 = Tk × αk (26)

The adaptive cooling rate αk is determined by the fitness
variance σ 2

k , which quantifies the diversity of solutions.
When σ 2

k is large (indicating diverse solutions), αk increases
proportionally to βσ 2

k , slowing the temperature decay (Tk )
to prolong exploration. Conversely, when σ 2

k decreases
(solutions converge), αk approaches α0, accelerating cooling
to prioritize exploitation. This feedback loop ensures the
algorithm self-adjusts to the solution landscape. The hyper-
parameters β, λ, andDmax are tuned empirically: β scales the
influence of σ 2

k on αk and is normalized by the fitness range
(β = 1/(max(f ) − min(f ))) during initialization to ensure
stability. The maximum similarity threshold Dmax is set as a
fraction (e.g., 10%) of the search space diameter, while the
penalty strength λ is initialized small (e.g., λ = 0.1) and
adjusted via grid search to balance exploration and rejection
penalties. This parameterization ensures robustness across
problems while retaining the adaptive benefits of aSAR.

Additionally, aSAR introduces a memory-based rejection
sampling mechanism that tracks previously rejected solu-
tions. This mechanism prevents the algorithm from revisiting
suboptimal regions by adding a penalty for solutions too
similar to those already rejected. The Euclidean distance
D(θ, θrej) between the current solution θ and a rejected solu-
tion θrej measures the similarity. The acceptance probability
is modified as:

Paccept=exp
(

1E
T

)
×

(
1−λ×min

(
1,
D(θ, θrej)
Dmax

))
(27)
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FIGURE 2. Block diagram of the aSAR optimization method.

where λ is a hyperparameter that regulates the strength of the
penalty, while Dmax sets a threshold defining the maximum
permissible similarity for rejection. If the distance between
the current solution and a previously rejected solution is
small, the penalty term increases, reducing the likelihood
of acceptance. This approach prevents the algorithm from
revisiting similar solutions, thereby enhancing the effi-
ciency of solution space exploration. The overall block
diagram of the aSAR optimization method is illustrated in
Figure 2.

The modifications introduced in aSAR, particularly the
adaptive cooling schedule and memory-based rejection,
address the issues of premature convergence and redundant
exploration present in traditional aSAR. By adjusting the
cooling rate based on solution diversity and preventing the
algorithm from revisiting previously explored suboptimal
regions, aSAR ensures more efficient exploration and
exploitation of the search space.

D. MODEL EVALUATION AND RANKING
The multi-criteria selection process operates through
two complementary mechanisms. The first identifies
Pareto-optimal solutions using nine competing objective
functions during aSAR optimization for each architecture
(TCN, LSTMandGRU). The second performs a final ranking
via the AHP. Algorithm 1 formalizes this dual-stage approach
as follows:

{f1, . . . , f9} → AHP Ranking (28)

where the left-hand side represents multi-criteria optimiza-
tion and the right-hand side denotes decision making for
the best architecture. Each objective function fj (defined
in Equations 2–10) expresses a distinct trade-off between
accuracy, measured by MAPE and efficiency, measured
by MS. The aSAR algorithm (Algorithm 2) explores this
nine-dimensional criterion space via adaptive simulated
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TABLE 1. Summary of hyper-parameters and constraints for LSTM, GRU and TCN models.

annealing, generating P Pareto-optimal candidates per objec-
tive function.

Following optimization of the hyperparameters for each
model using nine objective functions, we obtain P top-
performing models for each objective function, resulting in a
total of 9Pmodels. These models are trained on the complete
dataset and their MAPE and MS are recomputed. MAPE is
defined as the mean of the absolute percentage differences
between the predicted and actual values, indicating the
model’s prediction accuracy. To select the best models from
this set, we apply the AHP, a method used to compare
multiple criteria. In this case, we compare MAPE and MS
for each model. The first step involves normalizing the
MAPE and MS values to bring them onto a common scale.
Normalization is done using the formula:

Normalized Value =
Original Value−Min Value
Max Value−Min Value

+ ϵ

(29)

where ϵ is a small constant added to avoid division by zero.
Next, we create two pairwise comparison matrices: one for
MAPE and one for MS. Each matrix has size 9P×9P, where
9P represents the total number of models. For the MAPE
matrix AMAPE, each element AMAPE,ij is calculated as:

AMAPE,ij =
Normalized MAPEi
Normalized MAPEj

(30)

Similarly, for the MS matrix ASize, each element ASize,ij is
calculated as:

ASize,ij =
Normalized Sizei
Normalized Sizej

(31)

These matrices allow for a comparison of each model
against every other model in terms of MAPE andMS. To find
the relative importance of each model, we calculate the
principal eigenvector for each matrix by solving:

Av = λv (32)

where A is the pairwise comparison matrix, λ is the
eigenvalue and v is the eigenvector. The principal eigenvector,

corresponding to the largest eigenvalue, is then normalized to
obtain the priority vector:

vnormalized =
v∑
v

(33)

The consistency of the comparisons is checked using
the consistency ratio (CR). The consistency index (CI) is
calculated as:

CI =
λmax − 9P
9P− 1

(34)

where λmax is the largest eigenvalue of the pairwise
comparison matrix and 9P is the size of the matrix. The
consistency ratio is then computed as:

CR =
CI
RI

(35)

where RI is the random index that depends on the size of
the matrix and is obtained from standard tables. The CR
measures how consistent the comparisons are compared to a
perfectly consistent matrix. A CR less than 0.1 is acceptable
and indicates consistency in the pairwise comparisons.
If the CR exceeds 0.1, it suggests that the comparisons
might be inconsistent and the comparison process should be
revised. Ensuring consistency is crucial as it validates the
decision-making process and ensures that the comparisons
between the models are logically sound.

Finally, the overall AHP score for each model is computed
by combining the normalized priority vectors for MAPE
vnormalized, MAPE and MS vnormalized, Size as:

AHP Score = 0.5× vnormalized, MAPE + 0.5× vnormalized, Size

(36)

The models are ranked based on their AHP scores,
with the lowest scores indicating the best models. This
method provides a balanced evaluation of both accuracy and
complexity, ensuring the selected models are suitable for
deployment in memory-constrained environments. This AHP
process helps make a clear and fair decision in selecting the
optimal models. The pseudo code of the general framework
is given by algorithm 1 and 2
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Algorithm 1 Proposed Methodology
Initialize hyperparameter spaces for LSTM, GRU, TCN
from Table 1;
for model m ∈ {LSTM,GRU,TCN} do

for objective function fj ∈ {1, . . . , 9} do
Optimize hyperparameters using aSAR
(Algorithm 2) with fj;
Store top P models based on fj scores;

end for
end for
Train all 9× P models on full dataset;
Compute MAPE (Eq. 1) and Model Size (MS) for each
model;
Normalize MAPE and MS using Eq. 29;
Construct pairwise comparison matrices (Eqs. 30, 31);
Calculate priority vectors via eigen decomposition
(Eq. 32);
Check CR using Eqs. 34, 35;
if CR < 0.1 then

Compute AHP scores (Eq. 36);
Rank models by AHP scores;

end if
Select top-ranked model for each deployment location;

III. RESULTS AND COMPARISON
This section explains the results and comparison of the
proposed scheme with existing models. It first outlines the
experimental setup and the performance evaluation metrics,
followed by the results of the proposed method. The section
concludes with a comparison between the optimized aSAR-
LSTM, aSAR-TCN and aSAR-LSTM models and their
non-optimized counterparts using the Wilcoxon signed-rank
test.

A. EXPERIMENTAL SETUP
Since this study focuses on optimizing the hyperparameters
of LSTM, TCN andGRUmodels for deployment onmemory-
constrained devices. Therefore, the memory constraint is
the hard constraint hence, we have placed constraints on
the maximum size of different hyper-parameters. Memory
constraints necessitate precise hyper-parameters selection to
minimize both MS and MAPE. The learning rate is fixed at
1×10−4 across all models, with independent optimization of
each model’s objective function while maintaining the same
base architecture. The top three models selected by these
objective functions are converted to theOpenNeural Network
Exchange (ONNX) format before deployment on NVIDIA
Jetson devices. The Jetson Nano features a quad-core ARM
Cortex-A57 CPU (1.43GHz), a 128-CUDA-core Maxwell
GPU (921MHz) and 4GB LPDDR4 RAM. It runs Ubuntu
through the NVIDIA JetPack SDK, optimized for edge-AI
frameworks including TensorFlow, PyTorch and OpenCV,
with power consumption ranging from 5W to 10W (5 V DC),
making it ideal for edge deployment. TensorFlow provides

Algorithm 2 aSAR Optimization Algorithm
Input: Initial temp T0, cooling rate α0, β, λ, Dmax
Initialize population 2 with random solutions from
hyperparameter space;
Evaluate initial fitness E(θ )∀θ ∈ 2;
Initialize rejection memoryMrej← ∅;
Compute initial fitness variance σ 2

0 (Eq. 24);
k ← 0;
while Tk > Tstop and k < Nmax do

foreach θi ∈ 2 do
θnew← Perturb(θi);
Evaluate Enew← f (θnew);
1E ← Enew − E(θi);
Paccept← exp(1E/Tk );
foreach θrej ∈ Mrej do

D← Euclidean Distance(θnew, θrej);
if D < Dmax then

Paccept← Paccept × (1− λ);
end if

end foreach
if 1E < 0 or random() < Paccept then

θi← θnew;
E(θi)← Enew;

end if
else

Mrej← Mrej ∪ {θnew};
end if

end foreach
Compute σ 2

k from current population 2;
αk ← α0 × (1+ βσ 2

k );
Tk+1← Tk × αk ;
k ← k + 1;

end while
Return Best solution θ∗ ∈ 2;

an open-source utility for converting model checkpoints
to ONNX format, preserving the model’s architecture and
parameters for cross-platform compatibility. Post-conversion,
the ONNX models execute efficiently on NVIDIA Jetson
hardware while remaining portable to other edge devices such
as the Intel Movidius Neural Compute Stick, Google Coral
Edge TPU and Raspberry Pi systems. Table 2 summarizes
the hyperparameters and constraints used for LSTM, GRU
and TCN models:

The aSAR algorithm is employed for hyper-parameter
optimization. The initial temperature is set at T0 = 1000,
with a stopping threshold Tstop = 1and a base cooling rate
α0 = 0.99. The adaptive cooling rate αk is modulated by the
fitness variance scaling factor β = 0.1 and thememory-based
rejection mechanism uses λ = 0.2 and Dmax = 0.5. The
population size is N = 10 and the algorithm terminates after
Kmax = 100 iterations. For model training, the dataset is split
into 80% training, 10% validation and 10% testing. Training
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TABLE 2. Summary of hyper-parameters and constraints for LSTM, GRU
and TCN Models.

runs for 15 epochs with a patience of 3 and a batch size of
128. Table 3 lists the aSAR algorithm parameters.

TABLE 3. aSAR algorithm parameters.

B. SPATIO-TEMPORAL DATA DESCRIPTION
This study utilizes a spatio-temporal dataset capturing envi-
ronmental observations collected across multiple locations
and time periods. The dataset is obtained from an open-source
repository provided by the National Renewable Energy Lab-
oratory (NREL) [49]. At each location, hourly measurements
are recorded for five key parameters, temperature (◦C),
relative humidity (%), wind speed (m/s), wind direction (◦)
and air pressure (hPa). Data collection involves a central
station and four additional stations positioned 100 kilometers
apart, aligned in the north, south, east and west directions.

The spatial component arises from recording observations
at different locations, revealing how meteorological behavior
varies geographically. The temporal component emerges
from hourly sampling over extended periods, illustrating how
these environmental features evolve over time. By combining
both spatial and temporal dimensions, the dataset supports
more comprehensive modeling compared to single-point or
purely time-based series.

In this work, the main goal is to predict the next six-hour
state of these environmental variables. The emphasis lies
on optimizing hyperparameters of models such as LSTM,
GRU, or TCN so that the prediction error remains minimal

while retaining a compact architecture. Balancing prediction
accuracy and MS is crucial for efficient and scalable
deployment, especially where computational resources are
constrained. By tuning aspects such as the number of layers,
hidden units and regularization parameters, the approach
seeks to exploit the spatio-temporal nature of the data
without overfitting or incurring unnecessary computational
costs.

Table 4 summarizes the locations, time ranges and the total
number of hours in the dataset. An 80-10-10 split partitions
the data into training, validation and testing sets. This
division ensures the models learn from ample historical data
while allowing independent validation and testing, thereby
upholding a rigorous standard for performance evaluation.

TABLE 4. Summary of the spatio-temporal dataset and its 80-10-10 split.

Data quality is assured through NREL protocols [49],
including sensor calibration and automated anomaly detec-
tion. Temporal consistency is confirmed by sequential times-
tamp validation and zero-gap analysis. Spatial consistency
is supported by five-station measurements at a distance
of 100 Km from each other. Normalized entropy quantifies
feature diversity as:

Hn(Xi) = −
1

logN

N∑
k=1

p(xk ) log p(xk ) (37)

where p(xk ) is the probability of bin k and N is the count of
non-empty bins.Table 5 presents the normalized entropy of
wind speed and its range per country.

TABLE 5. Normalized entropy and range of wind speed.

Wind speed entropy is highest in Chile (Hn = 0.85),
indicating a more uniform distribution of values. Mongolia
and Kazakhstan have lower entropy values (0.76 and
0.72 respectively), indicating more clustered distributions.

These spatio-temporal records form the foundation for
developing robust predictive models. By accounting for both
geographic variation and temporal dynamics, the dataset
provides a richer context than traditional time series data
alone. This structure ultimately facilitates the design of
models that deliver accurate six-hour predictions while
maintaining practical levels of complexity for real-world
applications.
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C. COMPARISON MATRICES
This section presents the evaluation metrics used for model
performance assessment. The metrics include, Mean Squared
Error (MSE), Mean Absolute Error (MAE), R2 Score and
MS. The formulas for these metrics are provided below.

MSE is defined as:

MSE =
1
n

n∑
i=1

(
yi − ŷi

)2 (38)

MAE is defined as:

MAE =
1
n

n∑
i=1

(
yi − ŷi

)
(39)

R2 Score is defined as:

R2 = 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳ)2

(40)

In the above equations, yi represents the actual wind speed,
ŷi represents the predicted wind speed, ȳ is the mean of the
actual wind speeds and n is the number of observations.
The metric MS is computed separately. These metrics
quantify the predictive accuracy and model fit in forecasting
wind speeds, offering a comprehensive assessment of both
error magnitude and explanatory power.

D. RESULTS OF PROPOSED SCHEME
This section discusses the results of the aSAR optimization
algorithms in detail. The proposed scheme is applied to three
datasets collected from Chile, Kazakhstan and Mongolia as
discussed previously. In each dataset, the aSAR algorithm
is used for hyper-parameter optimization using all nine
objective function. Since the aSAR algorithm trains the
models for only 15 epochs, there is a possibility that some
models with certain hyper-parameters may not perform well
initially but may improve with extensive training. Therefore,
the top three models for each objective function are selected
and then extensively trained for 2000 epochs with a patience
of 15. Their MAPE andMS are then evaluated using the AHP
procedure to determine the top models.

In each figure, unique models generated by all objective
functions are plotted against MAPE and MS. MAPE is
represented as θ and MS as radius r , with a circular layout
on a 2D plane and the AHP score on the Z-axis. The MAPE,
MS and AHP score are normalized before plotting. The best
model is marked with a red dot, the second-best with a yellow
dot and the third best with a green dot. The rest of the models
are shown in cyan.

Figure 3 shows unique models generated by all objective
functions when optimizing a TCNmodel on the Chile dataset
using the aSAR algorithm. The best model has a MAPE of
13.03% and anMS of 9.01MB, generated by theQP objective
function (equation 7). The second-best model, generated by
the HM objective function (equation 6), has a MAPE of
13.15% and an MS of 10.23 MB. The third best model,
generated by the LC objective function (equation 4), has

FIGURE 3. AHP score against MS and MAPE for TCN model on Chile
dataset.

FIGURE 4. AHP score against MS and MAPE for LSTM model on Chile
dataset.

a MAPE of 14.22% and an MS of 12.34 MB. Moreover,
figure 4 shows unique models generated by all objective
functions when optimizing an LSTM model on the Chile
dataset using the aSAR algorithm. The best model has a
MAPE of 5.42% and an MS of 3.65 MB, generated by the
FLI objective function (equation 10). The second-best model,
generated by the QP objective function (equation 7), has a
MAPE of 5.65% and an MS of 13.66 MB. The third best
model, generated by the LWCobjective function (equation 2),
has a MAPE of 3.92% and an MS of 28.05 MB.
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FIGURE 5. AHP score against MS and MAPE for GRU model on Chile
dataset.

FIGURE 6. AHP score against MS and MAPE for TCN model on Kazakhstan
dataset.

Furthermore, figure 5 shows unique models generated by
all objective functions when optimizing a GRU model on the
Chile dataset using the aSAR algorithm. The best model has
a MAPE of 13.75% and an MS of 2.47 MB, generated by the
QP objective function (equation 7). The second-best model,
also generated by the QP objective function, has a MAPE
of 13.11% and an MS of 8.17 MB. The third-best model,
again generated by the QP objective function, has a MAPE
of 13.18% and an MS of 9.10 MB.

FIGURE 7. AHP score against MS and MAPE for LSTM model on
Kazakhstan dataset.

FIGURE 8. AHP score against MS and MAPE for GRU model on
Kazakhstan dataset.

Coming to the next dataset, figure 6 shows unique models
generated by all objective functions when optimizing a TCN
model on the Kazakhstan dataset using the aSAR algorithm.
The best model has aMAPE of 15.0% and anMS of 4.77MB,
generated by the QP objective function (equation 7). The
second-best model, generated by the HM objective function
(equation 6), has a MAPE of 18.55% and an MS of 0.79 MB.
The third best model, generated by the IS objective function
(equation 3), has aMAPE of 10.39% and anMS of 16.51MB.
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FIGURE 9. AHP score against MS and MAPE for TCN model on Mongolia
dataset.

FIGURE 10. AHP score against MS and MAPE for LSTM model on
Mongolia dataset.

Another model, figure 7, shows unique models generated
by all objective functions when optimizing an LSTM model
on the Kazakhstan dataset using the aSAR algorithm. The
best model has a MAPE of 18.48% and an MS of 4.86 MB,
generated by the LWC objective function (equation 2). The
second-best model, generated by the LC objective function
(equation 4), has a MAPE of 19.48% and an MS of 5.75 MB.
The third best model, also generated by the LC objective
function, has a MAPE of 19.06% and an MS of 14.12 MB.

FIGURE 11. AHP score against MS and MAPE for GRU model on Mongolia
dataset.

Figure 8 shows unique models generated by all objective
functions when optimizing a GRU model on the Kazakhstan
dataset using the aSAR algorithm. The best model has an
MAPE of 18.40% and an MS of 0.09 MB, generated by the
PI objective function (equation 9). The second-best model,
generated by the FLI objective function (equation 10), has
an MAPE of 18.00% and an MS of 6.83 MB. The third-best
model, also generated by the PI objective function, has an
MAPE of 19.67% and an MS of 0.73 MB.

Moving to the final dataset, figure 9 shows unique
models generated by all objective functions when optimizing
a TCN model on the Mongolia dataset using the aSAR
algorithm. The best model has an MAPE of 19.96% and an
MS of 2.20 MB, generated by the FLI objective function
(equation 10). The second-best model, also generated by the
FLI objective function, has an MAPE of 20.53% and an
MS of 3.82 MB. The third-best model, generated by the QP
objective function (equation 7), has an MAPE of 18.41% and
an MS of 6.48 MB. Furthermore, figure 10 shows unique
models generated by all objective functions when optimizing
an LSTM model on the Mongolia dataset using the aSAR
algorithm. The best model has an MAPE of 16.12% and
an MS of 6.19 MB, generated by the QP objective function
(equation 7). The second-best model, generated by the LWC
objective function (equation 2), has an MAPE of 15.76% and
an MS of 12.95 MB. The third best model, generated by
the FLI objective function (equation 10), has an MAPE of
15.57% and an MS of 14.78 MB.

Moreover, figure 11 shows unique models generated by
all objective functions when optimizing a GRU model on the
Mongolia dataset using the aSAR algorithm. The best model
has a MAPE of 14.93% and an MS of 1.19 MB, generated
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by the QP objective function (equation 7). The second-best
model, also generated by the QP objective function, has a
MAPE of 13.45% and an MS of 4.78 MB. The third best
model, generated by the LWCobjective function (equation 2),
has a MAPE of 10.96% and an MS of 11.43 MB.

1) ANALYSIS OF OBJECTIVE FUNCTION PERFORMANCE
ACROSS DATASETS AND MODELS
This study evaluates the performance of nine objective
functions across selected datasets for each model. Each
combination of model and dataset is tested with these
objective functions and the top three functions for each
combination are recorded that are shown in red yellow and
green colors in previous section. However, the frequency
and proportion of these functions in the top three results are
visually presented in figure 12.

The analysis reveals that the Quadratic Penalty (QP)
objective function, defined by 7, is the most frequently
selected, appearing in 37.04% of the top three results based
on its AHP Score. This shows that QP effectively balances
the trade-off between MS and MAPE (MAP) score across
the various models and datasets. Moreover, the consistent
appearance of QP in the top results suggests that it manages
the trade-offs in model complexity and predictive accuracy
well, which is essential in achieving robust performance
across different scenarios. In addition, the Focal Loss Inspired
(FLI) function, as described in 10, is the next most frequent,
appearing in 18.52% of the top three results. This is due to its
ability to focus on difficult-to-predict instances, which allows
the model to improve prediction accuracy by prioritizing
challenging data points. This approach is particularly relevant
in datasets with high variability or noise. Hence, FLI’s ability
to emphasize these challenging cases makes it a valuable
choice in complex data environments.

Additionally, the Linear Weighted Combination (LWC)
function, defined in 2, is observed in 14.81% of the top
results. This combines different error components linearly,
suggests its effectiveness in environments where a straight-
forward aggregation of errors enhances model performance.
Moreover, Logarithmic Combination (LC), Harmonic Mean
(HM) and Product of Inverses (PI) are observed less
frequently. Where, LC, defined in 4, appears in 11.11%
of the top results, suggesting its utility in reducing the
influence of large errors. Furthermore, HM, as described in 6
and PI, defined in 9, each appear in 7.41% of the results,
highlighting their roles in managing specific aspects of model
performance.

Furthermore, it is noteworthy that ES and CLL consistently
fail to appear in the top 3 results.Their absence suggests that
they may not be well-suited to the trade-offs required by the
models and datasets in this study. In short, figure 12 shows
the effectiveness of the QP objective function in achieving
a balanced model that does not overly compromise between
size and accuracy. Additionally, other functions like FLI and
LWC also demonstrate their utility in particular contexts,

offering alternative approaches depending on the specific
demands of the dataset and model configuration.

E. PERFORMANCE ANALYSIS OF ADAPTIVE
SAR-OPTIMIZED MODELS
This section provides a detailed analysis of the aSAR-optimized
models (GRU, LSTM, TCN) across three different datasets
(Chile, Kazakhstan, Mongolia). Each table presents theMSE,
R2 and MAE for the models over six prediction steps,
followed by a discussion of the results.

The MSE performance of the aSAR-optimized models
varies across the three datasets. In the Chile dataset, the
LSTM model clearly outperforms the GRU and TCN
models, achieving an average MSE of 0.11 (m/s)2, which
is significantly lower than GRU’s 0.66 (m/s)2 and TCN’s
0.74 (m/s)2. This indicates that LSTM provides 83.33% and
85.14% lesser MSE than GRU and TCN, respectively. In the
Kazakhstan dataset, the TCN model stands out with the
lowest average MSE of 0.27 (m/s)2, outperforming the GRU
and LSTM models by 41.30% and 40.00%, respectively.
For the Mongolia dataset, GRU is the best performer with
an average MSE of 0.14 (m/s)2, outperforming LSTM by
26.32% and TCN by 50.00%.

The R2 performancemetric, which indicates the proportion
of variance explained by the model, shows that the LSTM
model performs best in the Chile dataset with an average
R2 of 0.98. This is significantly higher than the GRU and
TCN models, which have average R2 scores of 0.90 and
0.91, respectively, highlighting LSTM’s superior predictive
power in this dataset. In the Kazakhstan dataset, the TCN
model once again leads with an average R2 of 0.93,
outperforming GRU (0.89) and LSTM (0.88) by 4.49% and
5.68%, respectively. For theMongolia dataset, GRU is the top
performer with an average R2 of 0.95, slightly higher than
LSTM’s 0.94 and significantly higher than TCN’s 0.91.

The MAE provides additional insight into the performance
of the aSAR-optimized models. For the Chile dataset, LSTM
again shows its dominance with the lowest average MAE
of 0.23 m/s, outperforming GRU and TCN by 59.65% and
56.60%, respectively. In the Kazakhstan dataset, TCN shows
the best performance with an average MAE of 0.38 m/s,
making it 20.83% less than GRU and 22.45% less than
LSTM. For the Mongolia dataset, GRU again leads with an
average MAE of 0.27 m/s, outperforming LSTM by 10.00%
and TCN by 27.03%.

This comprehensive analysis of the aSAR optimized
models’ performance across three datasets demonstrates that
the choice of the optimal model depends heavily on the
specific area from where the datasets are collected and the
WS behaviors. The LSTM model excels in the Chile dataset,
showing superior performance in MSE, R2 and MAE. The
TCN model is most effective for the Kazakhstan dataset,
where it leads in all metrics. For the Mongolia dataset,
the GRU model is the top performer, providing the best
results in MSE, R2 and MAE. These findings underscore

VOLUME 13, 2025 114533



L. Aslam et al.: Dynamic Optimization of Recurrent Networks for WSP on Edge Devices

FIGURE 12. Frequency and Proportion of Objective Functions in Top 3 Results Across All Datasets and Models.

TABLE 6. aSAR-optimized models performance - MSE (m/s2).

the importance of selecting models based on the dataset’s
characteristics to achieve optimal predictive accuracy.

F. LOCATION-SPECIFIC OPTIMIZATION FOR IMPROVED
WIND SPEED PREDICTION ON UNSEEN WIND PATTERNS
The results presented earlier are based on test data represent-
ing previously unseen samples within each dataset. However,
WSP is highly dependent on local wind patterns, which
vary significantly by location. Therefore, optimizing models
individually for each site is essential. The proposed approach
enables location-specific offline optimization, demonstrating
that tailoring the model to local wind patterns substantially
enhances prediction performance.

This method allows manufacturers of small-scale domestic
wind turbines to utilize publicly available wind data sources,
such as NERL, to download site-specific wind patterns and
optimize their models accordingly. Users can then download
optimized ONNX models from manufacturer websites that

are customized for their local conditions. Given the signifi-
cant variability in wind patterns across locations, developing
a single generalized model for small-scale turbines is
impractical. Instead, this study emphasizes the importance of
determining not only the optimal model architecture but also
the location-specific parameters to improve WSP accuracy
while keeping MS efficient.

G. UNCERTAINTY QUANTIFICATION IN WIND SPEED
PREDICTION
Wind speed prediction uncertainty originates from both
internal and external factors. Internal uncertainties arise
from the model’s structure and parameters, while external
uncertainties come from measurement noise, sensor errors
and unmodeled atmospheric variability. These uncertain-
ties can be parametric (related to model parameters) or
non-parametric (related to model form and architecture).
In practice, the exact magnitude and structure of these
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TABLE 7. aSAR-optimized models performance - R2.

TABLE 8. aSAR-optimized models performance - MAE (m/s).

uncertainties are unknown and time-varying. Our approach
quantifies overall uncertainty by analyzing prediction residu-
als and constructing well-calibrated 90% prediction intervals.
The consistent PI coverage near the nominal level across
different datasets and forecast horizons demonstrates that
this method effectively captures the combined uncertainty
effects.

Thus, although uncertainty components cannot be fully
separated in real-time, the residual-based intervals provide
meaningful and actionable estimates of forecast confidence,
which is crucial for operational WSP and energy man-
agement. To quantify uncertainty, we analyze prediction
residuals defined as ϵ = Ytest − Ŷpred and construct
90% prediction intervals (PIs) based on the empirical
residual percentiles. We use key metrics to characterize
uncertainty:
• Residual bias (µϵ): Mean residual error per forecast
horizon, indicating systematic over- or under-prediction.

• Residual dispersion (σϵ): Standard deviation of residu-
als, representing stochastic uncertainty magnitude.

• PI coverage: Percentage of true observations falling
within the 90% prediction interval, measuring
calibration accuracy.

• PI width: Average size of the prediction intervals,
balancing precision and reliability.

1) UNCERTAINTY CHARACTERISTICS ACROSS REGIONS
Table 9 summarizes these metrics for the top-performing
models across Chile, Kazakhstan and Mongolia. Residual
bias remains close to zero at all horizons(|µϵ | < 0.04 m/s),
confirming negligible systematic error in the forecasts. Resid-
ual dispersion increases with forecast horizon, reflecting

growing uncertainty over time due to chaotic atmospheric
dynamics. For example, in Mongolia, dispersion rises from
approximately 0.22 m/s at 1 hour ahead to 0.49 m/s at 6 hours
ahead.

PI coverage consistently aligns closely with the nom-
inal 90% target (all near 89.98–89.99%), indicating
well-calibrated uncertainty intervals. Notably, the average
PI width expands proportionally with residual dispersion,
roughly doubling it, which is expected as wider intervals
are required to maintain coverage over increasing uncertainty
horizons.

2) IMPLICATIONS FOR EDGE DEPLOYMENT AND
OPERATIONAL USE
Quantifying uncertainty is crucial for effective energy
management and real-time operational decisions. Wider pre-
diction intervals at longer horizons (for example, exceeding
1.5 m/s at 6 hours) indicate lower forecast confidence. In such
cases, the system may switch to safer fallback options, such
as using typical average wind speeds for the area or reducing
reliance on predicted wind power to avoid unexpected
drops in energy supply. Lightweight models like aSAR-
GRU (1.19 MB) are well-suited for real-time uncertainty
quantification on edge devices such as the NVIDIA Jetson,
enabling on-device computation of prediction intervals
for autonomous control. Although more complex methods
exist to separately model different uncertainty types, they
often require significantly more computational and memory
resources, making them impractical for resource-constrained
devices like the Jetson. Overall, the uncertainty quantification
results confirmwell-calibratedmodels with low bias, increas-
ing stochastic uncertainty with forecast horizon and reliable
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TABLE 9. Uncertainty metrics for optimized models (90% PIs).

TABLE 10. Performance comparison with state-of-the-art models.

prediction interval coverage, providing actionable confidence
estimates essential for operational wind energy forecasting.

H. COMPARISON WITH EXISTING METHODS
This section compares the proposed aSAR models with
existing methods for WSP. The models considered include
iTransformer [50], Flowformer [51], IDBO-VTGA [34], PI-
LSTM [25], Trans-LSTM [47] and 1D CNN-LSTM [52].
All these models are optimized using the Chile dataset, and
the same hyperparameters are applied to other locations. The
hyperparameters of all models are optimized to minimize
MSE, except for the Trans-LSTM model, which uses its own
proposed objective function. In contrast, the proposed model
employs terrain-dependent hyperparameter optimization and
selects architectures specifically suited to each location rather

than relying on a single universal architecture. Therefore,
for the Chile dataset, the model used is aSAR-LSTM, for
the Kazakhstan dataset, aSAR-TCN is applied and for the
Mongolia dataset, aSAR-GRU is employed. The performance
metrics reported are MSE in (m/s)2, MAE in (m/s), R2 Score,
MAPE in (%) and MS in MB. Table 10 shows the numerical
values for all models.

For the Chile dataset, iTransformer reports an MSE of
0.09 m/s2, MAE of 0.24 m/s, R2 of 0.97 and MAPE of 5.6%
with a MS of 13.9 MB, while Flowformer shows a slightly
higher MSE of 0.13 m/s2, MAE of 0.27 m/s, R2 of 0.95 and
MAPE of 6.2% at 27.9 MB. IDBO-VTGA, with a MS of
2.4 MB, exhibits higher errors with an MSE of 0.24 m/s2 and
MAE of 0.56 m/s and a lower R2 of 0.89 along with a MAPE
of 14.2%. PI-LSTM and 1D CNN-LSTM yield intermediate
results with MSEs of 0.22 m/s2 and 0.15 m/s2, MAEs of
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FIGURE 13. Percentage improvements of the aSAR models relative to state-of-the-art methods across the Chile, Kazakhstan and Mongolia datasets. The
x-axis is labeled ‘‘Models’’ and the legend, located below the subplots, identifies the competing models.

TABLE 11. Optimized Hyper-parameters and average latency for GRU and LSTM models.

TABLE 12. Optimized hyper-parameters and average latency for TCN models.

0.45m/s and 0.31m/s, R2 scores of 0.91 and 0.92 andMAPEs
of 9.7% and 8.8%, with MSs of 3.85 MB and 4.89 MB,

respectively. In contrast, aSAR-LSTM attains an MSE of
0.11 m/s2, MAE of 0.23 m/s, R2 of 0.98 and MAPE of 5.4%
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while having a MS of 3.65 MB. The comparison illustrates
that although iTransformer has the lowest MSE, its larger MS
and the performance of Flowformer, which is both high in size
and error, are drawbacks. Meanwhile, IDBO-VTGA, despite
its small size, suffers from high errors.

In the Kazakhstan dataset, iTransformer achieves an MSE
of 0.28 m/s2, MAE of 0.41 m/s, R2 of 0.90 and MAPE
of 17.5% with a size of 13.9 MB. Flowformer performs
worse with an MSE of 0.35 m/s2, MAE of 0.42 m/s, R2 of
0.87 and MAPE of 19.6% and its MS is 27.9 MB. IDBO-
VTGA continues to show higher error metrics with an MSE
of 0.55 m/s2, MAE of 0.89 m/s, R2 of 0.82 and MAPE of
26.5% at a size of 2.4 MB. PI-LSTM and 1D CNN-LSTM
yield MSEs of 0.37 m/s2 and 0.29 m/s2, MAEs of 0.46 m/s
and 0.44 m/s, R2 scores of 0.84 and 0.89 and MAPEs of
20.9% and 18.4%, with sizes of 3.85 MB and 4.89 MB,
respectively. aSAR-TCN records an MSE of 0.27 m/s2, MAE
of 0.38 m/s, R2 of 0.93 and MAPE of 15.0% while having a
MS of 4.77 MB. This demonstrates that aSAR-TCN provides
lower errors compared to the other methods and although
iTransformer shows comparable MSE, its overall efficiency
is limited by a larger MS, whereas Flowformer suffers both
in performance and size.

For the Mongolia dataset, iTransformer achieves an MSE
of 0.20 m/s2, MAE of 0.31 m/s, R2 of 0.91 and MAPE of
16.8% at a size of 13.9 MB. Flowformer reports an MSE of
0.18 m/s2, MAE of 0.28 m/s, R2 of 0.93 andMAPE of 15.9%,
but with a MS of 27.9 MB. IDBO-VTGA records an MSE of
0.24 m/s2, MAE of 0.39 m/s, R2 of 0.86 and MAPE of 24.6%
while being the smallest model at 2.4 MB, which, however,
comes with relatively high errors. PI-LSTM and 1D CNN-
LSTM provide MSEs of 0.28 m/s2 and 0.23 m/s2, MAEs
of 0.42 m/s and 0.34 m/s, R2 scores of 0.84 and 0.88 and
MAPEs of 25.9% and 19.2% with model sizes of 3.85 MB
and 4.89 MB, respectively. aSAR-GRU attains the lowest
errors among the models with an MSE of 0.14 m/s2, MAE
of 0.27 m/s, R2 of 0.95 and MAPE of 14.9% and its MS
is 1.19 MB. This comparison shows that while Flowformer
maintains a low error in MSE relative to some models, its
high MS is a disadvantage. Similarly, IDBO-VTGA, though
small in size, exhibits higher error values. aSAR-GRU, on the
other hand, balances error metrics and MS effectively.

Across the three datasets, the proposed aSARmodels show
a mixed pattern of improvements and drawbacks in different
metrics. In the Chile dataset, the iTransformer variant exhibits
a negative 22.22% improvement in MSE—indicating worse
performance in that metric—while delivering modest gains
in MAE (4.17%), R2 (1.03%) and MAPE (3.57%), along
with a substantial reduction in MS (73.74%). In contrast,
Flowformer achieves positive improvements in Chile with a
15.38% gain in MSE, 14.81% in MAE, 3.16% in R2 and
12.90% in MAPE, though its MS increases by 86.92%.
The IDBO-VTGA and PI-LSTM variants in Chile record
high improvements in error metrics—54.17% and 50.00%
in MSE respectively—with IDBO-VTGA also reducing MS
by 52.08% and PI-LSTM showing a slight size increase of

5.19%, while the 1D CNN-LSTM delivers moderate gains
(26.67% in MSE) with a 25.36% reduction in size. In the
Kazakhstan dataset, iTransformer offers small improvements
(e.g., 3.57% inMSE) and a 65.68% reduction inMS, whereas
Flowformer and IDBO-VTGA improve MSE by 22.86% and
50.91% respectively, with IDBO-VTGA notably reducing
size by 98.75%. PI-LSTM and 1D CNN-LSTM in Kaza-
khstan achieve improvements of 27.03% and 6.90% in MSE,
with MS reductions of 23.90% and a slight increase of 2.45%
respectively. In the Mongolia dataset, iTransformer shows
a 30.00% improvement in MSE with a large size increase
of 91.44% and Flowformer improves MSE by 22.22%
while increasing size by 95.73%. Additionally, IDBO-VTGA
attains a 41.67% improvement in MSE with a 50.42% size
increase, PI-LSTM records a 50.00% improvement in MSE
with a 69.09% size increase and 1D CNN-LSTM achieves a
39.13% improvement in MSE with a 75.66% size increase.
These results demonstrate that while some models achieve
high error metric improvements, they may do so at the cost of
increasedMS and a negative improvement in ametric (as seen
with iTransformer’s MSE in Chile) clearly indicates poorer
performance in that specific aspect. Figure 13 graphically
illustrates these percentage improvements across the three
datasets.

The overall comparison across datasets indicates that
models with lower error metrics tend to have larger model
sizes, as seen with iTransformer and Flowformer, whereas
models like IDBO-VTGA, despite their small sizes, do not
achieve competitive accuracy. The proposed aSAR models,
namely aSAR-LSTM, aSAR-TCN and aSAR-GRU, offer a
balanced trade-off between performance and MS, resulting
in lower errors and reduced computational requirements.

IV. CONCLUSION
This research developed a location-specific hyperparameter
optimization framework for WSP models using LSTM,
GRU, and TCN architectures. The aSAR algorithm, incor-
porating a memory-based rejection mechanism, balanced
prediction accuracy against model complexity under memory
constraints. Nine objective functions were evaluated, with
Quadratic Penalty (QP), Focal Loss Inspired (FLI), and Lin-
ear Weighted Combination (LWC) demonstrating superior
performance in minimizing MAPE and MS. Evaluations
across Chile, Kazakhstan, and Mongolia confirmed that
universal architectures fail to generalize. Both architecture
selection and hyperparameter tuning depend critically on
local wind patterns, indicating that small-scale turbines
require location-optimized models for efficient edge deploy-
ment.

Extensive evaluations conducted on datasets from Chile,
Kazakhstan, and Mongolia highlighted that a single set
of hyperparameters or a universal model architecture is
insufficient for every location. Instead, results emphasized
that both the choice of architecture and hyperparameters are
significantly dependent on local wind patterns. This indicates
that domestic small-scale wind turbines would greatly
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benefit from location-specific optimization and architecture
selection. However, this method requires a substantial dataset
to train the model and find the optimal hyperparameters.
Changes in weather patterns due to global warming may
affect the performance of the deployed model. In future work,
extensive experimentation will be required to determine a
robust set of data features and to identify optimal hyper-
parameters and architectures. Such efforts could facilitate
the training of a surrogate model capable of suggesting
optimal checkpoints tailored to specific locations based on
local wind statistics (variance, ramp frequency). Given the
highly variable nature of wind statistics, the development
of these adaptive surrogate models could substantially
streamline the deployment process, making high-precision,
location-specific wind prediction more accessible and
efficient.

APPENDIX
OPTIMIZED MODEL HYPER-PARAMETERS AND
AVERAGE LATENCY FOR SELECTED DATASETS
This section presents the optimized hyper-parameters for
the GRU, LSTM and TCN models on the selected datasets.
Table 11 summarizes the optimized hyper-parameters for
the GRU and LSTM models. Both models for Chile and
Kazakhstan use simpler architectures (N = 1), with different
numbers of units and activation functions: Tanh for Chile
and ReLU for Kazakhstan. The Mongolia dataset required a
deeper GRUmodel (N = 3) with different units across layers
and a combination of ReLU and Tanh activations. The LSTM
model for Mongolia uses ReLU activation and a slightly
higher number of units.

Table 12 presents the optimized hyper-parameters for the
TCN models. The configurations vary across datasets, with
different numbers of filters (F), kernel sizes (Ks) and dilations
(1) reflecting the complexity of the data. The dropout rates
were lowest for Chile (D = 0.03) and highest for Mongolia
(D = 0.09), with Kazakhstan’s dropout rate in between. The
use of ReLU activationwas consistent across all TCNmodels,
suggesting its effectiveness for capturing non-linearities.
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